# MATH 100 

Farid Aliniaeifard<br>University of British Columbia

2019

$$
f(x)= \begin{cases}2 x & x<3 \\ 9 & x=3 \\ 2 x & x>3\end{cases}
$$



## $f(x)=\sin \left(\frac{\pi}{x}\right)$



$$
f(x)= \begin{cases}x & x<2 \\ -1 & x=2 \\ x+3 & x>2\end{cases}
$$



## Example

Consider the graph of the function $f(x)$.


Then

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)= \\
& \lim _{x \rightarrow 1^{+}} f(x)= \\
& \lim _{x \rightarrow 1} f(x)=
\end{aligned}
$$

## Example

Consider the graph of the function $g(t)$.


Then

$$
\lim _{t \rightarrow 1^{-}} g(t)=
$$

$$
\lim _{t \rightarrow 1^{+}} g(t)=
$$

$$
\lim _{t \rightarrow 1} g(t)=
$$

## Example

Consider the graph of the function $f(x)$.


Then

$$
\begin{gathered}
\lim _{x \rightarrow 1^{-}} f(x)=2 \\
\lim _{x \rightarrow 1^{+}} f(x)=2 \\
\lim _{x \rightarrow 1} f(x)=2
\end{gathered}
$$

## Example

Consider the graph of the function $g(t)$.


Then

$$
\lim _{t \rightarrow 1^{-}} g(t)=2
$$

$$
\begin{aligned}
& \lim _{t \rightarrow 1^{+}} g(t)=-2 \\
& \lim _{t \rightarrow 1^{2}} g(t)=\text { DNE }
\end{aligned}
$$

## When the limit goes to infinity

Example
Consider the graph for the function $f(x)$.


$$
\lim _{x \rightarrow a} f(x)=+\infty
$$

## Example

Consider the graph for the function $g(x)$.

$\lim _{x \rightarrow a} g(x)=-\infty$

## Example

Consider the graph for the function $h(x)$.


## Example

Consider the graph for the function $s(x)$.


$$
\begin{aligned}
& \lim _{x \rightarrow a^{-}} s(x)= \\
& \lim _{x \rightarrow a^{+}} s(x)=
\end{aligned}
$$

## Example

Consider the graph for the function $h(x)$.


$$
\lim _{x \rightarrow a^{-}} h(x)=+\infty
$$

$$
\lim _{x \rightarrow a^{+}} h(x)=3
$$

## Example

Consider the graph for the function $s(x)$.


$$
\begin{gathered}
\lim _{x \rightarrow a^{-}} s(x)=3 \\
\lim _{x \rightarrow a^{+}} s(x)=-\infty
\end{gathered}
$$

## Example

Consider the function

$$
g(x)=\frac{1}{\sin (x)}
$$

Find the one-side limits of this function as $x \rightarrow \pi$.


$$
\begin{aligned}
& \lim _{x \rightarrow \pi^{-}} \frac{1}{\sin (x)}=+\infty \\
& \lim _{x \rightarrow \pi^{+}} \frac{1}{\sin (x)}=-\infty
\end{aligned}
$$

## Second Session Outline

- Arithmetic of the Limits
- Limit of a ratio: what will happen if the limit of the denominator is zero. For example,

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}} ? \quad \text { and } \quad \lim _{x \rightarrow 1} \frac{x^{3}-x^{2}}{x-1}=?
$$

- Sandwich/ Squeeze/Pinch Theorem
- limit at infinity


## Arithmetic of the Limits

## Theorem

Let $a, c \in \mathbb{R}$. The following two limits hold

$$
\lim _{x \rightarrow a} c=c \quad \lim _{x \rightarrow a} x=a
$$

## Example

$$
\lim _{x \rightarrow 3}-2=-2 \quad \lim _{x \rightarrow-1} x=-1
$$

## Theorem

(Arithmetic of Limits) Let $a, c \in \mathbb{R}$, let $f(x)$ and $g(x)$ be defined for all $x$ 's that lie in some interval about a (but $f$ and $g$ need not to be defined exactly at a).

$$
\lim _{x \rightarrow a} f(x)=F \quad \lim _{x \rightarrow a} g(x)=G
$$

exists with $F, G \in \mathbb{R}$. Then the following limits hold

- $\lim _{x \rightarrow a}(f(x)+g(x))=F+G$-limit of the sum is the sum of the limits.


## Theorem

(Arithmetic of Limits) Let $a, c \in \mathbb{R}$, let $f(x)$ and $g(x)$ be defined for all $x$ 's that lie in some interval about a (but $f$ and $g$ need not to be defined exactly at a).

$$
\lim _{x \rightarrow a} f(x)=F \quad \lim _{x \rightarrow a} g(x)=G
$$

exists with $F, G \in \mathbb{R}$. Then the following limits hold

- $\lim _{x \rightarrow a}(f(x)+g(x))=F+G$-limit of the sum is the sum of the limits.
- $\lim _{x \rightarrow a}(f(x)-g(x))=F-G$-limit of the difference is the difference of the limits.


## Theorem

(Arithmetic of Limits) Let $a, c \in \mathbb{R}$, let $f(x)$ and $g(x)$ be defined for all $x$ 's that lie in some interval about a (but $f$ and $g$ need not to be defined exactly at a).

$$
\lim _{x \rightarrow a} f(x)=F \quad \lim _{x \rightarrow a} g(x)=G
$$

exists with $F, G \in \mathbb{R}$. Then the following limits hold

- $\lim _{x \rightarrow a}(f(x)+g(x))=F+G$-limit of the sum is the sum of the limits.
- $\lim _{x \rightarrow a}(f(x)-g(x))=F-G$-limit of the difference is the difference of the limits.
- $\lim _{x \rightarrow a} c f(x)=c F$.


## Theorem

(Arithmetic of Limits) Let $a, c \in \mathbb{R}$, let $f(x)$ and $g(x)$ be defined for all $x$ 's that lie in some interval about a (but $f$ and $g$ need not to be defined exactly at a).

$$
\lim _{x \rightarrow a} f(x)=F \quad \lim _{x \rightarrow a} g(x)=G
$$

exists with $F, G \in \mathbb{R}$. Then the following limits hold

- $\lim _{x \rightarrow a}(f(x)+g(x))=F+G$-limit of the sum is the sum of the limits.
- $\lim _{x \rightarrow a}(f(x)-g(x))=F-G$-limit of the difference is the difference of the limits.
- $\lim _{x \rightarrow a} c f(x)=c F$.
- $\lim _{x \rightarrow a}(f(x) \cdot g(x))=F$.G-limit of the product is the product of the limits.

If $G \neq 0$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{F}{G}
$$

## Example

Given

$$
\lim _{x \rightarrow 1} f(x)=3 \text { and } \lim _{x \rightarrow 1} g(x)=2
$$

We have

$$
\lim _{x \rightarrow 1} 3 f(x)=
$$

## Example

## Given

$$
\lim _{x \rightarrow 1} f(x)=3 \text { and } \lim _{x \rightarrow 1} g(x)=2
$$

We have

$$
\lim _{x \rightarrow 1} 3 f(x)=3 \times \lim _{x \rightarrow 1} f(x)=3 \times 3=9
$$

$\lim _{x \rightarrow 1} 3 f(x)-g(x)=$

## Example

## Given

$$
\lim _{x \rightarrow 1} f(x)=3 \text { and } \lim _{x \rightarrow 1} g(x)=2
$$

We have

$$
\lim _{x \rightarrow 1} 3 f(x)=3 \times \lim _{x \rightarrow 1} f(x)=3 \times 3=9
$$

$\lim _{x \rightarrow 1} 3 f(x)-g(x)=3 \times \lim _{x \rightarrow 1} f(x)-\lim _{x \rightarrow 1} g(x)=3 \times 3-2=7$.
$\lim _{x \rightarrow 1} f(x) g(x)=$

## Example

## Given

$$
\lim _{x \rightarrow 1} f(x)=3 \text { and } \lim _{x \rightarrow 1} g(x)=2
$$

We have

$$
\lim _{x \rightarrow 1} 3 f(x)=3 \times \lim _{x \rightarrow 1} f(x)=3 \times 3=9 .
$$

$\lim _{x \rightarrow 1} 3 f(x)-g(x)=3 \times \lim _{x \rightarrow 1} f(x)-\lim _{x \rightarrow 1} g(x)=3 \times 3-2=7$.

$$
\lim _{x \rightarrow 1} f(x) g(x)=\lim _{x \rightarrow 1} f(x) . \lim _{x \rightarrow 1} g(x)=3 \times 2=6 .
$$

$\lim _{x \rightarrow 1} \frac{f(x)}{f(x)-g(x)}=$

## Example

## Given

$$
\lim _{x \rightarrow 1} f(x)=3 \text { and } \lim _{x \rightarrow 1} g(x)=2
$$

We have

$$
\lim _{x \rightarrow 1} 3 f(x)=3 \times \lim _{x \rightarrow 1} f(x)=3 \times 3=9
$$

$\lim _{x \rightarrow 1} 3 f(x)-g(x)=3 \times \lim _{x \rightarrow 1} f(x)-\lim _{x \rightarrow 1} g(x)=3 \times 3-2=7$.

$$
\lim _{x \rightarrow 1} f(x) g(x)=\lim _{x \rightarrow 1} f(x) \cdot \lim _{x \rightarrow 1} g(x)=3 \times 2=6
$$

$$
\lim _{x \rightarrow 1} \frac{f(x)}{f(x)-g(x)}=\frac{\lim _{x \rightarrow 1} f(x)}{\lim _{x \rightarrow 1} f(x)-\lim _{x \rightarrow 1} g(x)}=\frac{3}{3-2}=3
$$

## Example

$$
\begin{gathered}
\lim _{x \rightarrow 3} 4 x^{2}-1= \\
\lim _{x \rightarrow 2} \frac{x}{x-1}=
\end{gathered}
$$

## Example

$$
\begin{gathered}
\lim _{x \rightarrow 3} 4 x^{2}-1=4 \times \lim _{x \rightarrow 3} x^{2}-\lim _{x \rightarrow 3} 1=35 . \\
\lim _{x \rightarrow 2} \frac{x}{x-1}=\frac{\lim _{x \rightarrow 2} x}{\lim _{x \rightarrow 2} x-\lim _{x \rightarrow 1} 1}=\frac{2}{2-1}=2 .
\end{gathered}
$$

## Limit of a ratio: what will happen if the limit of the denominator is zero.

## Limit of a ratio: what will happen if the limit of denominator is zero:

- the limit does not exist, eg.

$$
\lim _{x \rightarrow 0} \frac{x}{x^{2}}=\lim _{x \rightarrow 0} \frac{1}{x}=D N E
$$

## Limit of a ratio: what will happen if the limit of denominator is zero:

- the limit does not exist, eg.

$$
\lim _{x \rightarrow 0} \frac{x}{x^{2}}=\lim _{x \rightarrow 0} \frac{1}{x}=D N E
$$

- the limit is $\pm \infty$, eg.

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{x^{4}}=\lim _{x \rightarrow 0} \frac{1}{x^{2}}=+\infty \quad \text { or } \quad \lim _{x \rightarrow 0} \frac{-x^{2}}{x^{4}}=\lim _{x \rightarrow 0} \frac{-1}{x^{2}}=-\infty
$$

## Limit of a ratio: what will happen if the limit of denominator is zero:

- the limit does not exist, eg.

$$
\lim _{x \rightarrow 0} \frac{x}{x^{2}}=\lim _{x \rightarrow 0} \frac{1}{x}=D N E
$$

- the limit is $\pm \infty$, eg.

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{x^{4}}=\lim _{x \rightarrow 0} \frac{1}{x^{2}}=+\infty \quad \text { or } \quad \lim _{x \rightarrow 0} \frac{-x^{2}}{x^{4}}=\lim _{x \rightarrow 0} \frac{-1}{x^{2}}=-\infty
$$

- the limit is 0 , eg.

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{x}=\lim _{x \rightarrow 0} x=0
$$

## Limit of a ratio: what will happen if the limit of denominator is zero:

- the limit does not exist, eg.

$$
\lim _{x \rightarrow 0} \frac{x}{x^{2}}=\lim _{x \rightarrow 0} \frac{1}{x}=D N E
$$

- the limit is $\pm \infty$, eg.

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{x^{4}}=\lim _{x \rightarrow 0} \frac{1}{x^{2}}=+\infty \quad \text { or } \quad \lim _{x \rightarrow 0} \frac{-x^{2}}{x^{4}}=\lim _{x \rightarrow 0} \frac{-1}{x^{2}}=-\infty
$$

- the limit is 0 , eg.

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{x}=\lim _{x \rightarrow 0} x=0
$$

- the limit exists and it nonzero, eg.

$$
\lim _{x \rightarrow 0} \frac{x}{x}=1
$$

## Theorem

Let $n$ be a positive integer, let $a \in R$ and let $f$ be a function so that

$$
\lim _{x \rightarrow a} f(x)=F
$$

for some real number $F$. Then the following holds

$$
\lim _{x \rightarrow a}(f(x))^{n}=\left(\lim _{x \rightarrow a} f(x)\right)^{n}=F^{n}
$$

so that the limit of a power is the power of the limit.

## Theorem

Let $n$ be a positive integer, let $a \in R$ and let $f$ be a function so that

$$
\lim _{x \rightarrow a} f(x)=F
$$

for some real number F. Then the following holds

$$
\lim _{x \rightarrow a}(f(x))^{n}=\left(\lim _{x \rightarrow a} f(x)\right)^{n}=F^{n}
$$

so that the limit of a power is the power of the limit.
Similarly, if

- $n$ is an even number and $F>0$, or
- $n$ is an odd number and $F$ is any real number then

$$
\lim _{x \rightarrow a}(f(x))^{1 / n}=\left(\lim _{x \rightarrow a} f(x)\right)^{1 / n}=F^{1 / n}
$$

## Example

$$
\begin{gathered}
\lim _{x \rightarrow 4} x^{1 / 2}= \\
\lim _{x \rightarrow 4}(-x)^{1 / 2}= \\
\lim _{x \rightarrow 2}\left(4 x^{2}-3\right)^{1 / 3}=
\end{gathered}
$$

## Example

$$
\begin{gathered}
\lim _{x \rightarrow 4} x^{1 / 2}=4^{1 / 2}=2 \\
\lim _{x \rightarrow 4}(-x)^{1 / 2}=-4^{1 / 2}=\text { not a real number. } \\
\lim _{x \rightarrow 2}\left(4 x^{2}-3\right)^{1 / 3}=\left(4(2)^{2}-3\right)^{1 / 3}=(13)^{1 / 3}
\end{gathered}
$$

Limit of a ratio: what will happen if the limit of the numerator and denominator are zero, for example,
$\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}}{x-1}=$ ?

$$
\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}}{x-1}=?
$$



Theorem
If $f(x)=g(x)$ except when $x=a$ then

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)
$$

provided the limit of $g$ exists.

$$
\frac{x^{3}-x^{2}}{x-1}=\left\{\begin{array}{ll}
x^{2} & x \neq 1 \\
\text { undefined } & x=1
\end{array} \Rightarrow \lim _{x \rightarrow 1} \frac{x^{3}-x^{2}}{x-1}=\lim _{x \rightarrow 1} x^{2}=1\right.
$$



## Sandwich/ Squeeze/Pinch Theorem

## Example

Compute

$$
\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{\pi}{x}\right)
$$



## Example

Let $f(x)$ be a function such that $1 \leq f(x) \leq x^{2}-2 x+2$. What is

$$
\lim _{x \rightarrow 1} f(x) ?
$$

## Example

Let $f(x)$ be a function such that $1 \leq f(x) \leq x^{2}-2 x+2$. What is

$$
\lim _{x \rightarrow 1} f(x) ?
$$

Solution
Consider that

$$
\lim _{x \rightarrow 1} x=1 \quad \text { and } \quad \lim _{x \rightarrow 1} x^{2}-2 x+2=1
$$

Therefore, by the sandwich/pinch/squeeze theorem

$$
\lim _{x \rightarrow 1} f(x)=1
$$

## Example

We want to compute

$$
\lim _{x \rightarrow+\infty} \frac{1}{x} \quad \text { and } \quad \lim _{x \rightarrow-\infty} \frac{1}{x}
$$

By plug in some large numbers into $\frac{1}{x}$ we have

$$
\begin{array}{c|c|c|c|c|}
-10000 & -1000 & -100\|\circ\| 100 & 1000 & 10000 \\
\hline-0.0001 & -0.001 & -0.01\|\circ\| 0.01 & 0.001 & 0.0001
\end{array}
$$

We see that as $x$ is getting bigger and positive the function $\frac{1}{x}$ is getting closer to 0 . Thus,

$$
\lim _{x \rightarrow+\infty} \frac{1}{x}=0
$$

Moreover,

$$
\lim _{x \rightarrow-\infty} \frac{1}{x}=0
$$

## Limit at Infinity

## Definition

(Informal limit at infinity.) We write

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

when the value of the function $f(x)$ gets closer and closer to $L$ as we make $x$ larger and larger and positive.
Similarly, we write

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

when the value of the function $f(x)$ gets closer and closer to $L$ as we make $x$ larger and larger and negative.

## Example

Consider the graph of the function $f(x)$.


Then

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)= \\
& \lim _{x \rightarrow-\infty} f(x)=
\end{aligned}
$$

## Example

Consider the graph of the function $g(x)$.


Then

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} g(x)= \\
& \lim _{x \rightarrow-\infty} g(x)=
\end{aligned}
$$

## Example

Consider the graph of the function $f(x)$.


Then

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=-2 \\
& \lim _{x \rightarrow-\infty} f(x)=2
\end{aligned}
$$

## Example

Consider the graph of the function $g(x)$.


Then

$$
\lim _{x \rightarrow \infty} g(x)=-2
$$

$\lim _{x \rightarrow-\infty} g(x)=+\infty$

Review of the third session

## Review

Theorem
sandwich (or squeeze or pinch) Let $a \in \mathbb{R}$ and let $f, g$, $h$ be three functions so that

$$
f(x) \leq g(x) \leq h(x)
$$

for all $x$ in an interval around a, except possibly at $x=a$. Then if

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L
$$

then it is also the case that

$$
\lim _{x \rightarrow a} g(x)=L
$$

## Example

Compute

$$
\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{\pi}{x}\right)
$$



## Theorem

Let $c \in \mathbb{R}$ then the following limits hold

$$
\begin{gathered}
\lim _{x \rightarrow+\infty} c=c \quad \lim _{x \rightarrow-\infty} c=c \\
\lim _{x \rightarrow+\infty} \frac{1}{x}=0 \\
\lim _{x \rightarrow-\infty} \frac{1}{x}=0 .
\end{gathered}
$$

## Outline For the Fourth Session

- Limit at Infinity


## Limit at Infinity

## Theorem

Let $f(x)$ and $g(x)$ be two functions for which the limits

$$
\lim _{x \rightarrow \infty} f(x)=F \quad \lim _{x \rightarrow \infty}=G
$$

exist. Then the following limits hold

$$
\begin{gathered}
\lim _{x \rightarrow \infty}(f(x)+g(x))=F \pm G \\
\lim _{x \rightarrow \infty} f(x) g(x)=F G \\
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\frac{F}{G} \quad \text { provided } G \neq 0
\end{gathered}
$$

and for rational numbers $r$,

$$
\lim _{x \rightarrow \infty}(f(x))^{r}=F^{r}
$$

provided that $f(x)^{r}$ is defined for all $x$.
The analogous results hold for limits to $-\infty$.

Warning: Consider that

$$
\lim _{x \rightarrow+\infty} \frac{1}{x^{1 / 2}}=0
$$

However,

$$
\lim _{x \rightarrow+\infty} \frac{1}{(-x)^{1 / 2}}
$$

does not exist because $x^{1 / 2}$ is not defined for $x<0$.
$f(x)=\frac{x^{2}-3 x+4}{3 x^{2}+8 x+1}$


$$
\sqrt{x^{2}}=|x|= \begin{cases}x & x \geq 0 \\ -x & x<0\end{cases}
$$



$$
y=\frac{\sqrt{4 x^{2}+1}}{5 x-1}
$$



Theorem
Let $a, c, H \in \mathbb{R}$ and let $f, g$, $h$ be functions defined in an interval around a (but they need not be defined at $x=a$ ), so that

$$
\lim _{x \rightarrow a} f(x)=+\infty \quad \lim _{x \rightarrow a} g(x)=+\infty \quad \lim _{x \rightarrow a} h(x)=H
$$

1. 

$$
\lim _{x \rightarrow a}(f(x)+g(x))=
$$

2. 

$$
\lim _{x \rightarrow a}(f(x)+h(x))=
$$

3. 

$$
\lim _{x \rightarrow a}(f(x)-g(x))=
$$

4. 

$$
\lim _{x \rightarrow a}(f(x)-h(x))=
$$

Theorem
Let $a, c, H \in \mathbb{R}$ and let $f, g$, $h$ be functions defined in an interval around a (but they need not be defined at $x=a$ ), so that

$$
\lim _{x \rightarrow a} f(x)=+\infty \quad \lim _{x \rightarrow a} g(x)=+\infty \quad \lim _{x \rightarrow a} h(x)=H
$$

1. 

$$
\lim _{x \rightarrow a}(f(x)+g(x))=+\infty
$$

2. 

$$
\lim _{x \rightarrow a}(f(x)+h(x))=+\infty
$$

3. 

$$
\lim _{x \rightarrow a}(f(x)-g(x))=\text { undetermined }
$$

4. 

$$
\lim _{x \rightarrow a}(f(x)-h(x))=+\infty
$$

## Theorem

5. 

$$
\lim _{x \rightarrow a} c f(x)=\left\{\begin{array}{l}
c>0 \\
c=0 \\
c<0
\end{array}\right.
$$

6. 

$$
\lim (f(x) \cdot g(x))=
$$

7. 

$$
\lim _{x \rightarrow a}(f(x) \cdot h(x))=\left\{\begin{array}{l}
H>0 \\
H=0 \\
H<0
\end{array}\right.
$$

8. 

$$
\lim _{x \rightarrow a} \frac{h(x)}{f(x)}=
$$

## Theorem

5. 

$$
\lim _{x \rightarrow a} c f(x)= \begin{cases}+\infty & c>0 \\ 0 & c=0 \\ -\infty & c<0\end{cases}
$$

6. 

$$
\lim (f(x) \cdot g(x))=+\infty
$$

7. 

$$
\lim _{x \rightarrow a}(f(x) \cdot h(x))= \begin{cases}+\infty & H>0 \\ \text { undetermined } & H=0 \\ -\infty & H<0\end{cases}
$$

8. 

$$
\lim _{x \rightarrow a} \frac{h(x)}{f(x)}=0
$$

## Example

Consider the following three functions:

$$
f(x)=x^{-2} \quad g(x)=2 x^{-2} \quad h(x)=x^{-2}-1 .
$$

Then

$$
\lim _{x \rightarrow 0} f(x)=+\infty \quad \lim _{x \rightarrow 0} g(x)=+\infty \quad \lim _{x \rightarrow 0} h(x)=+\infty
$$

Then
1.

$$
\lim _{x \rightarrow 0}(f(x)-g(x))=
$$

2. 

$\lim _{x \rightarrow 0}(f(x)-h(x))=$
3.

$$
\lim _{x \rightarrow 0}(g(x)-h(x))=
$$

## Example

Consider the following three functions:

$$
f(x)=x^{-2} \quad g(x)=2 x^{-2} \quad h(x)=x^{-2}-1
$$

Then

$$
\lim _{x \rightarrow 0} f(x)=+\infty \quad \lim _{x \rightarrow 0} g(x)=+\infty \quad \lim _{x \rightarrow 0} h(x)=+\infty
$$

Then
1.

$$
\lim _{x \rightarrow 0}(f(x)-g(x))=\lim _{x \rightarrow 0} x^{-2}=\infty
$$

2. 

$$
\lim _{x \rightarrow 0}(f(x)-h(x))=\lim _{x \rightarrow 0}(1)=1
$$

3. 

$$
\lim _{x \rightarrow 0}(g(x)-h(x))=\lim _{x \rightarrow 0} x^{-2}+1=\infty
$$

## Outline For the Session Five

- Limit at Infinity
- Continuity
- Continuous from the left and from the right
- Arithmetic of continuity
- continuity of composites
- Intermediate Value Theorem


## Example

Consider that if

$$
\lim _{x \rightarrow a} f(x)=\infty \quad \lim _{x \rightarrow a} g(x)=\infty
$$

Then

$$
\lim _{x \rightarrow a}(f(x)-g(x))=\text { undetermined }
$$

Continuity





$$
f(x)= \begin{cases}x & x<1 \\ x+2 & x \geq 1\end{cases}
$$

| jump discontinuity |  |
| :---: | :---: |

$$
g(x)= \begin{cases}\frac{1}{x^{2}} & x \neq 0 \\ 0 & x=0\end{cases}
$$



$$
h(x)= \begin{cases}\frac{x^{3}-x^{2}}{x-1} & x \neq 1 \\ 0 & x=1\end{cases}
$$



## Outline - September 16, 2019

- Section 1.6:
- Arithmetic of continuity
- Continuity of composites
- Intermediate Value Theorem
- Section 2.1:
- Revisiting tangent lines


## Arithmetic of continuity

## Theorem

(Arithmetic of continuity) Let $a, c \in \mathbb{R}$ and let $f(x)$ and $g(x)$ be functions that are continuous at $a$. Then the following functions are also continuous at $x=a$.

- $f(x)+g(x)$ and $f(x)-g(x)$,
- cf(x) and $f(x) g(x)$, and
- $\frac{f(x)}{g(x)}$ provided $g(a) \neq 0$.


Intermediate value theorem(IVT)

Theorem

## (Intermediate value theorem(IVT))



The existence not the uniqueness of $c$ in IVT


Not continuous functions at $[a, b]$ do not satisfy IVT



## Revisiting tangent lines

## Revisiting tangent lines


$\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \leftarrow \quad$ slope of the tangent line at $x=1$

## Definition of the derivative

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
\end{aligned}
$$

## Examples

- $f(x)=c$
- $f(x)=x$
- $f(x)=x^{2}$
- $f(x)=\frac{1}{x}$
- $f(x)=\sqrt{x}$
- $f(x)=|x|$


## $y=\frac{1}{x}$ and its derivative $-\frac{1}{x^{2}}$



## Tangent lines to $y=\sqrt{x}$



The derivative of the function $f(x)=|x|$ : not differentiable at $x=0$


The derivative of the function $f(x)=|x|$


Where a function is not differentiable at $x=a$ ?

- Having a Sharp Corner at $x=a$

- The function is not continuous at $x=a$

- Having a tangent line, but the slope of the tangent line at $x=a$ is infinity



## Outline - September 20, 2019

- Section 2.2:
- Not differentiable examples
- The relation between continuous and differentiable functions
- Section 2.3:
- Interpretations of the derivative

Where a function is not differentiable at $x=a$ ?

- Having a Sharp Corner at $x=a$

- The function is not continuous at $x=a$

- Having a tangent line, but the slope of the tangent line at $x=a$ is infinity


An example of a discontinuous and not differentiable function

$$
H(x)= \begin{cases}1 & x>0 \\ 0 & x \leq 0\end{cases}
$$



An example of a function with a tangent line with slope infinity at $x=0$
$f(x)=x^{1 / 3}$


An example of a continuous and not differentiable function $y=\sqrt{|x|}$


## Instantaneous rate of change


average rate of change of $f(t)$ from $t=a$ to $t=a+h$ is

$$
\frac{\text { change in } f(t) \text { from } t=a \text { to } t=a+h}{\text { length of time from } t=a \text { to } t=a+h}
$$

$$
=\frac{f(a+h)-f(a)}{h} .
$$

And so
instantaneous rate of change of $f(t)$ at $t=a$
$=\lim _{h \rightarrow 0}$ [average rate of change of $f(t)$ from $t=a$ to $t=a+h$ ]

$$
=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=f^{\prime}(a)
$$

## Finding tangent line to a curve at $x=a$



A line segment of a tangent line

$$
y=f(a)+f^{\prime}(a)(x-a)
$$

## Outline - September 23, 2019

- Section 2.4 and 2.5:
- Derivative of some simple functions
- Tools
- Examples

A list of derivative of some simple functions:

$$
\frac{d}{d x} 1=0 \quad \frac{d}{d x} x=1 \quad \frac{d}{d x} x^{2}=2 x \quad \frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}}
$$

## A list of derivative of some simple functions:

$$
\frac{d}{d x} 1=0 \quad \frac{d}{d x} x=1 \quad \frac{d}{d x} x^{2}=2 x \quad \frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}}
$$

Tools
Let $f(x)$ and $g(x)$ be differentiable functions and let $c, d \in \mathbb{R}$.

- $\frac{d}{d x}\{f(x)+g(x)\}=f^{\prime}(x)+g^{\prime}(x)$
- $\frac{d}{d x}\{f(x)-g(x)\}=f^{\prime}(x)-g^{\prime}(x)$
- $\frac{d}{d x}\{c f(x)\}=c f^{\prime}(x)$


## Tools

Let $f(x), g(x)$, and $h(x)$ be differentiable functions and let $c, d \in \mathbb{R}$.

- $\frac{d}{d x}\{f(x) g(x)\}=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)$
- $\frac{d}{d x}\left\{\frac{f(x)}{g(x)}\right\}=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{g(x)^{2}} \quad g(x) \neq 0$


## Tools

Let $f(x), g(x)$, and $h(x)$ be differentiable functions and let $c, d \in \mathbb{R}$.

- $\frac{d}{d x}\{f(x) g(x)\}=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)$
- $\frac{d}{d x}\left\{\frac{f(x)}{g(x)}\right\}=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{g(x)^{2}} \quad g(x) \neq 0$
- $\frac{d}{d x}\{c f(x)+d g(x)\}=c f^{\prime}(x)+d g^{\prime}(x)$
- $\frac{d}{d x}\left\{f(x)^{2}\right\}=2 f(x) f^{\prime}(x)$
- $\frac{d}{d x}\left\{\frac{1}{g(x)}\right\}=\frac{-g^{\prime}(x)}{g(x)^{2}} \quad g(x) \neq 0$


## Tools

Let $f(x), g(x)$, and $h(x)$ be differentiable functions and let $c, d \in \mathbb{R}$.

- $\frac{d}{d x}\{f(x) g(x)\}=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)$
- $\frac{d}{d x}\left\{\frac{f(x)}{g(x)}\right\}=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{g(x)^{2}} \quad g(x) \neq 0$
- $\frac{d}{d x}\{c f(x)+d g(x)\}=c f^{\prime}(x)+d g^{\prime}(x)$
- $\frac{d}{d x}\left\{f(x)^{2}\right\}=2 f(x) f^{\prime}(x)$
- $\frac{d}{d x}\left\{\frac{1}{g(x)}\right\}=\frac{-g^{\prime}(x)}{g(x)^{2}} \quad g(x) \neq 0$
- $\frac{d}{d x}\{f(x) g(x) h(x)\}=$ $f^{\prime}(x) g(x) h(x)+f(x) g^{\prime}(x) h(x)+f(x) g(x) h^{\prime}(x)$
- $\frac{d}{d x}\left\{f(x)^{n}\right\}=n f^{n-1}(x) f^{\prime}(x)$


## Tools

Let $f(x), g(x)$, and $h(x)$ be differentiable functions and let $c, d \in \mathbb{R}$.

- $\frac{d}{d x}\{f(x) g(x)\}=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)$
- $\frac{d}{d x}\left\{\frac{f(x)}{g(x)}\right\}=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{g(x)^{2}} \quad g(x) \neq 0$
- $\frac{d}{d x}\{c f(x)+d g(x)\}=c f^{\prime}(x)+d g^{\prime}(x)$
- $\frac{d}{d x}\left\{f(x)^{2}\right\}=2 f(x) f^{\prime}(x)$
- $\frac{d}{d x}\left\{\frac{1}{g(x)}\right\}=\frac{-g^{\prime}(x)}{g(x)^{2}} \quad g(x) \neq 0$
- $\frac{d}{d x}\{f(x) g(x) h(x)\}=$ $f^{\prime}(x) g(x) h(x)+f(x) g^{\prime}(x) h(x)+f(x) g(x) h^{\prime}(x)$
- $\frac{d}{d x}\left\{f(x)^{n}\right\}=n f^{n-1}(x) f^{\prime}(x)$
- Let $a$ be a rational number, then

$$
\frac{d}{d x} x^{a}=a x^{a-1}
$$

## Outline - September 25, 2019

- Section 2.7 and 2.8:
- Derivative of exponential functions
- Derivative of trigonometric functions

The graph of $e^{x}$


The graph of $q^{x}$ where $q>1$


## YOUR TURN!

## Example

Find $a$ such that the following function is continuous.

$$
f(x)= \begin{cases}e^{x+a} & x<0 \\ \sqrt{x+1} & x \geq 0\end{cases}
$$

## Example

We have

1. $\log _{q}(x y)=$
(a) $\log _{q}(x)+\log _{q}(y)$
(b) $\log _{q}(x) \log _{q}(y)$
2. $\log _{q}(x / y)=$
3. $\log _{q}\left(x^{r}\right)=$

## Example

We have

1. $\log _{q}(x y)=\log _{q}(x)+\log _{q}(y)$.

The reason for this is that

$$
q^{\log _{q}(x y)}=x y=q^{\log _{q}(x)} q^{\log _{q}(y)}=q^{\log _{q}(x)+\log _{q}(y)}
$$

Therefore, $\log _{q}(x y)=\log (x)+\log (y)$.
2. $\log _{q}(x / y)=\log _{q}(x)-\log _{q}(y)$
3. $\log _{q}\left(x^{r}\right)=r \log _{q}(x)$

TOOLS:

$$
\frac{d}{d x}(f \circ g)(x)=g^{\prime}(x) f^{\prime}(g(x))
$$

A list of derivative of some simple functions:

$$
\frac{d}{d x} e^{x}=e^{x}
$$

$$
\frac{d}{d x} a^{x}=\left(\log _{e} a\right) a^{x}
$$

## Example

Find the derivative of $2^{\sqrt{x}}$.

## Example

Find the derivative of $2^{\sqrt{x}}$.

## Example

Find $a$ and $b$ such that the following function is differentiable.

$$
f(x)= \begin{cases}x^{3}+a & x<1 \\ e^{x-1}+b x & x \geq 1\end{cases}
$$

## Outline - September 30, 2019

- Section 2.8, 2.9, 0.6:
- Derivative of trigonometric functions
- The chain rule
- inverse of a function

A list of derivative of some simple functions:

$$
\frac{d}{d x} e^{x}=e^{x} \quad \frac{d}{d x} a^{x}=\left(\log _{e} a\right) a^{x}
$$

$$
\sin (x) \quad \text { domain }=\mathbb{R} \quad \text { range }=[-1,1]
$$

$\boldsymbol{\operatorname { s i n }} x$

(c) CalculatorSoup.com

$$
\cos (x) \quad \text { domain }=\mathbb{R} \quad \text { range }=[-1,1]
$$

$\cos x$


$$
\tan (x)=\frac{\sin (x)}{\cos (x)} \quad \text { domain }=\mathbb{R}-\left\{(2 n+1) \frac{\pi}{2}: n \in \mathbb{Z}\right\} \quad \text { range }=\mathbb{R}
$$

$\boldsymbol{\operatorname { t a n }} \mathbf{x}$

(c) CalculatorSoup.com

$$
\cot (x)=\frac{\cos (x)}{\sin (x)} \text { domain }=\mathbb{R}-\{n \pi: n \in \mathbb{Z}\} \text { range }=\mathbb{R}
$$

$\cot x$


$$
\begin{gathered}
\sec (x)=\frac{1}{\cos (x)} \quad \text { domain }=\mathbb{R}-\left\{(2 n+1) \frac{\pi}{2}: n \in \mathbb{Z}\right\} \\
\text { range }=\mathbb{R}-(-1,1)
\end{gathered}
$$

$\sec x$

© CalculatorSoup.com

$$
\csc (x)=\frac{1}{\sin (x)} \text { domain }=\mathbb{R}-\{n \pi: n \in \mathbb{Z}\} \text { range }=\mathbb{R}-(-1,1)
$$

## $\csc \mathbf{x}$



## Derivative of $\sin (x)$

Question: Knowing that

$$
\cos h \leq \frac{\sin h}{h} \leq 1
$$

compute the derivative of $\sin (x)$ at $x=0$.

## Derivative of $\sin (x)$

Question: Knowing that

$$
\cos h \leq \frac{\sin h}{h} \leq 1
$$

compute the derivative of $\sin (x)$ at $x=0$.
(sandwich (or squeeze or pinch) theorem ) Let $a \in \mathbb{R}$ and let $f, g, h$ be three functions so that $f(x) \leq g(x) \leq h(x)$ for all $x$ in an interval around $a$, except possibly at $x=a$. Then if

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L
$$

then it is also the case that

$$
\lim _{x \rightarrow a} g(x)=L
$$

An example of the application of the chain rule


- Your position at time $t$ is $x(t)$.
- The temperature of the air at position $x$ is $f(x)$.
- The temperature that you feel at time $t$ is $F(t)=f(x(t))$.
- The instantaneous rate of change of temperature that you feel is $F^{\prime}(t)$.


## The chain rule

Theorem
Let $f$ and $g$ be differentiable functions then

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

The chain rule

Theorem
Let $y=f(u)$ and $u=g(x)$ be differentiable functions, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x} .
$$

## Outline - October 2, 2019

- Section 0.6, 2.10:
- Inverse of a function
- Natural logarithm
input number $x \mapsto f$ does "stuff" to $x \mapsto$ return number $y$
take output $y \mapsto$ do "stuff" to $y \mapsto$ return the original number $x$


## One-to-one functions




$$
\begin{array}{rll}
\mathbb{R} & \rightarrow & \mathbb{R} \\
x & \mapsto & x^{3}
\end{array}
$$

$\mathbb{R} \rightarrow \mathbb{R}$
$\begin{array}{ccc}{[0, \infty]} & \rightarrow & \mathbb{R} \\ x & \mapsto & x^{2}\end{array}$

## One-to-one functions



$$
\begin{array}{rllllclc}
\mathbb{R} & \rightarrow \mathbb{R} & \mathbb{R} & \rightarrow & \mathbb{R} & {[0, \infty)} & \rightarrow & \mathbb{R} \\
x & \mapsto & x^{3} & x & \mapsto & x^{2} & x & \mapsto
\end{array} x^{2}
$$

is one-to-one
is not one-to-one
is one-to-one

## Inverse of a functions



## Inverse of a functions



## Inverse of $\sin (x)$



## Inverse of $\sin (x)$



- $\sin (x)$ is not invertible on the domain $\mathbb{R}$ because it is not one-to-one.


## Inverse of $\sin (x)$



- $\sin (x)$ is not invertible on the domain $\mathbb{R}$ because it is not one-to-one.
- If we look at $\sin (x)$ on the domain $[-\pi / 2, \pi / 2]$, then it is one-to-one, and so it is has an inverse.


## Inverse of $\sin (x)$



- $\sin (x)$ is not invertible on the domain $\mathbb{R}$ because it is not one-to-one.
- If we look at $\sin (x)$ on the domain $[-\pi / 2, \pi / 2]$, then it is one-to-one, and so it is has an inverse.
- The inverse of $\sin (x)$ is $\arcsin (x)$ on the domain $[-1,1]$ and with the range $[-\pi / 2, \pi / 2]$.

How to find the inverse of a function by its graph


## $a^{\log _{a} x}=x$

Remember that for $a>1$,

$$
\begin{gathered}
a^{\log _{a} x}=x, \\
\log _{a} x=\frac{\log _{e} x}{\log _{e} a} .
\end{gathered}
$$

The inverse of $e^{x}$




## Outline - October 4, 2019

- Section 2.10 and 2.11:
- Natural logarithm
- Implicit derivative


## Useful facts!

- $\frac{d}{d x} a^{x}=(\ln a) a^{x}$.
- $\log _{a} x=\frac{\ln x}{\ln a} \quad \ln x=\frac{\log _{a} x}{\log _{a} e} \quad a>1$.
- $\ln (x y)=\ln x+\ln y$.
- $\ln (x / y)=\ln x-\ln y$.
- $\ln x^{r}=r \ln x$.


## Useful facts!

- $\frac{d}{d x} a^{x}=(\ln a) a^{x}$.
- $\log _{a} x=\frac{\ln x}{\ln a} \quad \ln x=\frac{\log _{a} x}{\log _{a} e} \quad a>1$.
- $\ln (x y)=\ln x+\ln y$.
- $\ln (x / y)=\ln x-\ln y$.
- $\ln x^{r}=r \ln x$.
- $\frac{d}{d x} \ln x=\frac{1}{x}$.


## Useful facts!

- $\frac{d}{d x} a^{x}=(\ln a) a^{x}$.
- $\log _{a} x=\frac{\ln x}{\ln a} \quad \ln x=\frac{\log _{a} x}{\log _{a} e} \quad a>1$.
- $\ln (x y)=\ln x+\ln y$.
- $\ln (x / y)=\ln x-\ln y$.
- $\ln x^{r}=r \ln x$.
- $\frac{d}{d x} \ln x=\frac{1}{x}$.
- $\frac{d}{d x} \ln |x|=\frac{1}{x}$.


## Useful facts!

- $\frac{d}{d x} a^{x}=(\ln a) a^{x}$.
- $\log _{a} x=\frac{\ln x}{\ln a} \quad \ln x=\frac{\log _{a} x}{\log _{a} e} \quad a>1$.
- $\ln (x y)=\ln x+\ln y$.
- $\ln (x / y)=\ln x-\ln y$.
- $\ln x^{r}=r \ln x$.
- $\frac{d}{d x} \ln x=\frac{1}{x}$.
- $\frac{d}{d x} \ln |x|=\frac{1}{x}$.
- $\frac{d}{d x} \log _{a} x=\frac{1}{x \cdot \ln a}$.


## Useful facts!

- $\frac{d}{d x} a^{x}=(\ln a) a^{x}$.
- $\log _{a} x=\frac{\ln x}{\ln a} \quad \ln x=\frac{\log _{a} x}{\log _{a} e} \quad a>1$.
- $\ln (x y)=\ln x+\ln y$.
- $\ln (x / y)=\ln x-\ln y$.
- $\ln x^{r}=r \ln x$.
- $\frac{d}{d x} \ln x=\frac{1}{x}$.
- $\frac{d}{d x} \ln |x|=\frac{1}{x}$.
- $\frac{d}{d x} \log _{a} x=\frac{1}{x \cdot \ln a}$.
- $\frac{d}{d x} \ln f(x)=\frac{f^{\prime}(x)}{f(x)}$


## Useful facts!

$-\frac{d}{d x} a^{x}=(\ln a) a^{x}$.

- $\log _{a} x=\frac{\ln x}{\ln a} \quad \ln x=\frac{\log _{a} x}{\log _{a} e} \quad a>1$.
- $\ln (x y)=\ln x+\ln y$.
- $\ln (x / y)=\ln x-\ln y$.
- $\ln x^{r}=r \ln x$.
- $\frac{d}{d x} \ln x=\frac{1}{x}$.
- $\frac{d}{d x} \ln |x|=\frac{1}{x}$.
- $\frac{d}{d x} \log _{a} x=\frac{1}{x \cdot \ln a}$.
- $\frac{d}{d x} \ln f(x)=\frac{f^{\prime}(x)}{f(x)}$
$-\frac{d}{d x}|f(x)|=\frac{f^{\prime}(x)}{f(x)}$.


## Outline - October 7, 2019

- Section 2.11 and 2.12:
- Implicit derivative
- Derivative of Trig functions


## Implicit derivative

$$
\frac{d}{d x} x=\frac{d}{d x} e^{\ln x} \quad\left(\frac{d}{d x} x=\frac{d}{d x} e^{y}\right)
$$

which is the same as

$$
1=\left(\frac{d}{d x} \ln x\right) \cdot e^{\ln x} \quad\left(1=y^{\prime} e^{y}\right)
$$

Note that $e^{\ln x}=x\left(e^{y}=x\right)$, thus

$$
1=\left(\frac{d}{d x} \ln x\right) \cdot x \quad\left(1=y^{\prime} x\right)
$$

and so

$$
\frac{d}{d x} \ln x=\frac{1}{x}
$$

$$
\left(y^{\prime}=\frac{1}{x}\right)
$$

## $3 x^{3}+5 y^{2}=7$



$$
\psi
$$

## $x^{2 / 3}+y^{2 / 3}=1$




## Outline - October 9, 2019

- Section 2.12:
- Derivative of Trig functions


## Review of the inverse of a function

Remember that the inverse of a one-to-one function $f(x)$ with domain $A$ and range $B$ is a function $g(x)$ with domain $B$ and range $A$ such that

$$
f(g(y))=y \quad g(f(x))=x \quad x \in A, y \in B
$$



## Trigonometry



- sine: $\sin A=\frac{a}{h}=\frac{\text { opposite }}{\text { hypotenuse }}$
- cosine: $\cos A=\frac{b}{h}=\frac{\text { adjacent }}{\text { hypotenuse }}$
- tangent: $\tan A=\frac{a}{b}=\frac{\text { opposite }}{\text { adjacent }}$
- cosecant: $\csc A=\frac{h}{a}=\frac{\text { hypotenuse }}{\text { opposite }}$
- secant: $\sec A=\frac{h}{b}=\frac{\text { hypotenuse }}{\text { adjacent }}$
- cotangent: $\cot A=\frac{b}{a}=\frac{\text { adjacent }}{\text { opposite }}$


## $\arcsin (\sin (x))$

$\arcsin (\sin (x))=$ the unique angle $\theta$ between $-\pi / 2$ and $\pi / 2$ obeying that

$$
\sin (x)=\sin (\theta)
$$

## What is $\arcsin \left(\sin \left(\frac{11 \pi}{16}\right)\right)$ ?



## $\cos (\arcsin (x))=\sqrt{1-x^{2}}$



## Inverse of $\sin (x)$



## Inverse of $\cos (x)$



## Inverse of $\tan (x)$



Arctan $x$


## Inverse of $\operatorname{cotan}(x)$




## Inverse of $\sec (x)$

$$
\operatorname{arcsec}(x)=\arccos (1 / x)
$$




## Inverse of $\csc (x)$

$$
\operatorname{arccsc}(x)=\arcsin (1 / x)
$$




## $\sin (\theta)=\sin (\arccos (x))=\sqrt{1-x^{2}}$



$$
\cos ^{2}(\arctan (x))=\cos ^{2}(\theta)=\frac{1}{1+x^{2}}
$$



$$
\frac{1}{\csc ^{2}(\theta)}=\sin ^{2}(\theta)=1+x^{2}
$$



## Outline - October 11, 2019

- Section 3.1:
- Derivative of Trig functions


## Inverse of $\csc (x)$

$$
\operatorname{arccsc}(x)=\arcsin (1 / x)
$$




## Derivative of the inverses of trigonometric functions in a nut-

 shellIn a nutshell the derivatives of the inverse trigonometric functions are

$$
\begin{aligned}
\frac{d}{d x} \arcsin (x) & =\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x} \operatorname{arccsc}(x) & =-\frac{1}{|x| \sqrt{x^{2}-1}} \\
\frac{d}{d x} \arccos (x) & =-\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x} \operatorname{arcsec}(x) & =\frac{1}{|x| \sqrt{x^{2}-1}} \\
\frac{d}{d x} \arctan (x) & =\frac{1}{1+x^{2}} & \frac{d}{d x} \operatorname{arccot}(x) & =-\frac{1}{1+x^{2}}
\end{aligned}
$$

## The Application of Derivatives

Velocity and Acceleration
If you are moving along the $x$-axis and your position at time $t$ is $x(t)$, then

- your velocity at time $t$ is $v(t)=x^{\prime}(t)$ and
- your acceleration at time $t$ is $a(t)=v^{\prime}(t)=x^{\prime \prime}(t)$.


## Direction of your move with $x(t)=t^{3}-3 t+2$

| $t$ | $(t-1)(t+1)$ | $x^{\prime}(t)=3(t-1)(t+1)$ | Direction |
| :---: | :---: | :---: | :---: |
| $t<-1$ | positive | positive | right |
| $t=-1$ | zero | zero | halt |
| $-1<t<1$ | negative | negative | left |
| $t=1$ | zero | zero | halt |
| $t>1$ | positive | positive | right |

And here is a schematic picture of the whole trajectory.


## Direction of your move with $x(t)=t^{3}-12 t+5$

| $t$ | $(t-2)(t+2)$ | $x^{\prime}(t)=3(t-2)(t+2)$ | Direction |
| :---: | :---: | :---: | :---: |
| $t<-2$ | positive | positive | right |
| $t=-2$ | zero | zero | halt |
| $-2<t<2$ | negative | negative | left |
| $t=2$ | zero | zero | halt |
| $t>2$ | positive | positive | right |


| $t$ | your positionx $(t)$ | $x^{\prime}(t)$ | Direction |
| :---: | :---: | :---: | :---: |
| 0 | 5 | negative | left |
| $t=2$ | -11 | zero | halt |
| $t=10$ | 885 | positive | right |

## Outline - October 16, 2019

- Section 3.2: Exponential Growth and Decay
- 3.1: Carbon Dating

EXAM: Friday, October 18, Here in Class, at 2pm

## Carbon Dating



More precisely, let $Q(t)$ denote the amount of $C$ (an element) in the plant or animal $t$ years after it dies. The number of radioactive decays (rate of change) per unit time, at time $t$, is proportional to the amount of $C$ present at time $t$, which is $Q(t)$. Thus

## Radioactive Decay

$$
\begin{equation*}
\frac{d Q}{d t}(t)=-k Q(t) \tag{1}
\end{equation*}
$$

## Corollary

The function $Q(t)$ satisfies the equation

$$
\frac{d Q}{d t}=-k Q(t)
$$

if and only if

$$
Q(t)=Q(0) \cdot e^{-k t}
$$

The half-life (the half-life of $C$ is the length of time that it takes for half of the $C$ to decay) is defined to be the time $t_{1 / 2}$ which obeys

$$
Q\left(t_{1 / 2}\right)=\frac{1}{2} \cdot Q(0)
$$

The half-life is related to the constant $k$ by

$$
t_{1 / 2}=\frac{\ln 2}{k} .
$$

## Outline - October 21, 2019

- Section 3.3.2: Newton's Law of Cooling
- 3.1: Newton's Law of Cooling

No pain no gain


Principles (Ray Dalio)

## Most people



Successful person


Newton's Law of Cooling

## COFFEE COOLING



$$
\frac{d T}{d t}(t)=K[T(t)-A] .
$$

We have three possibilities:

- $T(t)>A \Rightarrow[T(t)-A]>0$, thus the temperature of the body is decreasing, so $\frac{d T}{d t}$ must be negative, since $\frac{d T}{d t}(t)=K[T(t)-A]$, we must have $K<0$.
- $T(t)<A \Rightarrow[T(t)-A]<0$, thus the temperature of the body is increasing, so $\frac{d T}{d t}$ must be positive, since $\frac{d T}{d t}(t)=K[T(t)-A]$, we must have $K<0$.
- $T(t)=A \Rightarrow[T(t)-A]=0$, thus the temperature of the body is no changing, so $\frac{d T}{d t}$ must be zero, since $\frac{d T}{d t}(t)=K[T(t)-A]$. This does not impose any condition on $K$.

Newton's Law of Cooling

## Corollary

A differentiable function $T(t)$ obeys the differential equation

$$
\frac{d T}{d t}(t)=K[T(t)-A]
$$

if and only if

$$
T(t)=[T(0)-A] e^{K t}+A
$$


(i.) 2 entered this room at 9:30 cm and talk to him for 5 minutes.

## Outline - October 23, 2019

- Section 3.3.3: Population Growth
- Section 3.2: Related Rates


## Population Growth

Suppose that we wish to predict the size $P(t)$ of a population as a function of the time $t$. So suppose that in average each couple produces $\beta$ offspring (for some constant $\beta$ ) and then dies. Then over the course of one generation since we have $P(t) / 2$ couples and each have produced $\beta$ offspring, thus the population of the children of one generation is

$$
\beta \frac{P(t)}{2} .
$$

Let $t_{g}$ be the life span of one generation, then

$$
\begin{aligned}
P\left(t+t_{g}\right) & =\beta \frac{P(t)}{2} \\
& =P(t)+\beta \frac{P(t)}{2}-P(t)
\end{aligned}
$$

Therefore,

$$
P\left(t+t_{g}\right)-P(t)=\beta \frac{P(t)}{2}-P(t)
$$

and so dividing both sides by $t_{g}$, we have

$$
\begin{aligned}
\frac{P\left(t+t_{g}\right)-P(t)}{t_{g}} & =\frac{1}{t_{g}}\left(\frac{\beta}{2} P(t)-P(t)\right) \\
& =\frac{1}{t_{g}}\left(\frac{\beta}{2}-1\right) P(t)
\end{aligned}
$$

Let $\frac{1}{t_{g}}\left(\frac{\beta}{2}-1\right)=b$, then

$$
\frac{P\left(t+t_{g}\right)-P(t)}{t_{g}}=b P(t)
$$

Approximately, we have

$$
\frac{d P}{d t}=b P(t)
$$

Moreover, same as the model for carbon dating we can write

$$
P(t)=P(0) e^{b t}
$$

## Malthusian growth model

## Malthusian growth model

The model for the population growth is

$$
\frac{d P}{d t}=b P(t)
$$

and $P(t)$ satisfies the above equation if and only if

$$
P(t)=P(0) e^{b t}
$$

## Related Rates

Volume of a sphere
Remember that the volume of a sphere with radius $r$ is

$$
V=\frac{4}{3} \pi r^{3} .
$$

## Helium Balloon



## Ladder




## Outline - October 25, 2019

- Section 3.2: Related Rates: An Example
- Section 3.4.2 The Linear Approximation
- Section 3.4.3 The Quadratic Approximation


## Shadow of the Ball

Similar triangles-ratio


## Approximation



This figure shows that the curve $y=x$ and $y=\sin (x)$ are almost the same when $x$ is close to 0 . Hence if we want the value of $\sin (1 / 10)$ we just use this approximation $y=x$ to get

$$
\sin (1 / 10) \approx 1 / 10
$$

## The linear approximation

Given a function $f(x)$ we want to have the approximating function to be a linear function that is $F(x)=A+B x$ for some constants $A$ and $B$.


The linear approximation

$$
f(x) \approx F(x)=f(a)+f^{\prime}(a)(x-a)
$$

## Example

Estimate $e^{0.01}$ ? So $f(x)=e^{x}$ and $a=0$.

## The quadratic approximation

In linear approximation we had

$$
\begin{gathered}
f(x) \approx F(x)=f(a)+f^{\prime}(a)(x-a) \Rightarrow \\
f(a)=F(a) \quad \text { and } \quad f^{\prime}(a)=F^{\prime}(a)
\end{gathered}
$$

We now want our approximation function to be a quadratic function of $x$, that is, $F(x)=A+B x+C x^{2}$. To have a good approximating function we choose $A, B$, and $C$ so that

- $f(a)=F(a)$
- $f^{\prime}(a)=F^{\prime}(a)$
- $f^{\prime \prime}(a)=F^{\prime \prime}(a)$

These conditions give us the following equations

$$
\begin{aligned}
& F(x)=A+B x+C x^{2} \Rightarrow \quad F(a)=A+B a+C a^{2}=f(a) \\
& F^{\prime}(x)=B+2 C x \Rightarrow \\
& F^{\prime \prime}(x)=2 C \Rightarrow \quad F^{\prime}(a)=B+2 C a=f^{\prime}(a) \\
& F^{\prime}(a)=2 C=f^{\prime \prime}(a)
\end{aligned}
$$

Solving these equation we can write $A, B$, and $C$ in terms of $f(a)$, $f^{\prime}(a)$, and $f^{\prime \prime}(a)$. So that

$$
\begin{gathered}
C=\frac{1}{2} f^{\prime \prime}(a) \\
B=f^{\prime}(a)-a f^{\prime \prime}(a) \\
A=f(a)-a\left[f^{\prime}(a)-a f^{\prime \prime}(a)\right]-\frac{1}{2} f^{\prime \prime}(a) a^{2}
\end{gathered}
$$

Consider that $F(x)=A+B x+C X^{2}$, substituting $A, B$, and $C$, we obtain

## Quadratic Approximation

$$
F(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

Therefore,

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

## Outline - October 28, 2019

- Section 3.4.3 The Quadratic Approximation
- Section 3.4.4 Taylor Polynomials
- Section 3.4.5 Some Examples


## Linear Approximation

Approximate $f(x)$ by $F(x)=c_{0}+c_{1}(x-a)$ such that

1. $F(a)=f(a)$
2. $F^{\prime}(a)=f^{\prime}(a)$

## Linear Approximation

Approximate $f(x)$ by $F(x)=c_{0}+c_{1}(x-a)$ such that

$$
\begin{aligned}
& \text { 1. } F(a)=f(a) \\
& \text { 2. } F^{\prime}(a)=f^{\prime}(a)
\end{aligned}
$$

Then

$$
F(a)=c_{0}=f(a) \quad F^{\prime}(a)=c_{1}=f^{\prime}(a)
$$

And so

$$
F(x)=f(a)+f^{\prime}(a)(x-a)
$$

## Quadratic Approximation

Approximate $f(x)$ by $F(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}$ such that

1. $F(a)=f(a)$
2. $F^{\prime}(a)=f^{\prime}(a)$
3. $F^{\prime \prime}(a)=f^{\prime \prime}(a)$

## Quadratic Approximation

Approximate $f(x)$ by $F(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}$ such that

1. $F(a)=f(a)$
2. $F^{\prime}(a)=f^{\prime}(a)$
3. $F^{\prime \prime}(a)=f^{\prime \prime}(a)$

Then
$F(a)=c_{0}=f(a) \quad F^{\prime}(a)=c_{1}=f^{\prime}(a) \quad F^{\prime \prime}(a)=2 c_{2}=f^{\prime \prime}(a)$.

## Quadratic Approximation

Approximate $f(x)$ by $F(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}$ such that

1. $F(a)=f(a)$
2. $F^{\prime}(a)=f^{\prime}(a)$
3. $F^{\prime \prime}(a)=f^{\prime \prime}(a)$

Then

$$
F(a)=c_{0}=f(a) \quad F^{\prime}(a)=c_{1}=f^{\prime}(a) \quad F^{\prime \prime}(a)=2 c_{2}=f^{\prime \prime}(a)
$$

And so

$$
F(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2} .
$$

## Taylor Polynomial

We want to approximate $f(x)$ with a polynomial $T_{n}(x)$ of degree $n$ of the form

$$
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n}
$$

such that

$$
\begin{aligned}
& \text { 1. } \quad T_{n}(a)=f(a), \\
& \text { 2. } \quad T_{n}^{\prime}(a)=f^{\prime}(a), \\
& \quad \vdots \\
& \text { n. } \quad T_{n}^{(n)}(a)=f^{(n)}(a) .
\end{aligned}
$$

## Taylor Polynomial

$$
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n} \Rightarrow T_{n}(a)=
$$

## Taylor Polynomial

$$
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n} \Rightarrow T_{n}(a)=c_{0}=f(a)
$$

## Taylor Polynomial

$$
\begin{aligned}
& T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n} \Rightarrow T_{n}(a)=c_{0}=f(a) \\
& T_{n}^{\prime}(x)=c_{1}+2 c_{2}(x-a)+\cdots+n c_{n}(x-a)^{n-1} \Rightarrow T_{n}^{\prime}(a)=
\end{aligned}
$$

## Taylor Polynomial

$$
\begin{aligned}
& T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n} \Rightarrow T_{n}(a)=c_{0}=f(a) \\
& T_{n}^{\prime}(x)=c_{1}+2 c_{2}(x-a)+\cdots+n c_{n}(x-a)^{n-1} \Rightarrow T_{n}^{\prime}(a)=c_{1}=f^{\prime}(a)
\end{aligned}
$$

## Taylor Polynomial

$$
\begin{gathered}
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n} \Rightarrow T_{n}(a)=c_{0}=f(a) \\
T_{n}^{\prime}(x)=c_{1}+2 c_{2}(x-a)+\cdots+n c_{n}(x-a)^{n-1} \Rightarrow T_{n}^{\prime}(a)=c_{1}=f^{\prime}(a) \\
T_{n}^{\prime \prime}(x)=2 c_{2}+3 \times 2 c_{3}(x-a)+\cdots+n(n-1) c_{n}(x-a)^{n-2} \\
\Rightarrow T_{n}^{\prime \prime}(a)=
\end{gathered}
$$

## Taylor Polynomial

$$
\begin{gathered}
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n} \Rightarrow T_{n}(a)=c_{0}=f(a) \\
T_{n}^{\prime}(x)=c_{1}+2 c_{2}(x-a)+\cdots+n c_{n}(x-a)^{n-1} \Rightarrow T_{n}^{\prime}(a)=c_{1}=f^{\prime}(a) \\
T_{n}^{\prime \prime}(x)=2 c_{2}+3 \times 2 c_{3}(x-a)+\cdots+n(n-1) c_{n}(x-a)^{n-2} \\
\Rightarrow T_{n}^{\prime \prime}(a)=2 c_{2}=f^{\prime \prime}(a)
\end{gathered}
$$

## Taylor Polynomial

$$
\begin{gathered}
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n} \Rightarrow T_{n}(a)=c_{0}=f(a) \\
T_{n}^{\prime}(x)=c_{1}+2 c_{2}(x-a)+\cdots+n c_{n}(x-a)^{n-1} \Rightarrow T_{n}^{\prime}(a)=c_{1}=f^{\prime}(a) \\
T_{n}^{\prime \prime}(x)=2 c_{2}+3 \times 2 c_{3}(x-a)+\cdots+n(n-1) c_{n}(x-a)^{n-2} \\
\Rightarrow T_{n}^{\prime \prime}(a)=2 c_{2}=f^{\prime \prime}(a) \\
T_{n}^{(3)}(x)=3 \times 2 c_{3}+4 \times 3 \times 2 c_{4}(x-a)+\cdots+n(n-1) c_{n}(x-a)^{n-2} \\
\Rightarrow T_{n}^{(3)}(a)=
\end{gathered}
$$

## Taylor Polynomial

$$
\begin{gathered}
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n} \Rightarrow T_{n}(a)=c_{0}=f(a) \\
T_{n}^{\prime}(x)=c_{1}+2 c_{2}(x-a)+\cdots+n c_{n}(x-a)^{n-1} \Rightarrow T_{n}^{\prime}(a)=c_{1}=f^{\prime}(a) \\
T_{n}^{\prime \prime}(x)=2 c_{2}+3 \times 2 c_{3}(x-a)+\cdots+n(n-1) c_{n}(x-a)^{n-2} \\
\Rightarrow T_{n}^{\prime \prime}(a)=2 c_{2}=f^{\prime \prime}(a) \\
\begin{array}{c}
T_{n}^{(3)}(x)=3 \times 2 c_{3}+4 \times 3 \times 2 c_{4}(x-a)+\cdots+n(n-1) c_{n}(x-a)^{n-2} \\
\Rightarrow T_{n}^{(3)}(a)=6 c_{3}=f^{(3)}(a)
\end{array}
\end{gathered}
$$

## Taylor Polynomial

$$
\begin{gathered}
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n} \Rightarrow T_{n}(a)=c_{0}=f(a) \\
T_{n}^{\prime}(x)=c_{1}+2 c_{2}(x-a)+\cdots+n c_{n}(x-a)^{n-1} \Rightarrow T_{n}^{\prime}(a)=c_{1}=f^{\prime}(a) \\
T_{n}^{\prime \prime}(x)=2 c_{2}+3 \times 2 c_{3}(x-a)+\cdots+n(n-1) c_{n}(x-a)^{n-2} \\
\Rightarrow T_{n}^{\prime \prime}(a)=2 c_{2}=f^{\prime \prime}(a) \\
T_{n}^{(3)}(x)=3 \times 2 c_{3}+4 \times 3 \times 2 c_{4}(x-a)+\cdots+n(n-1) c_{n}(x-a)^{n-2} \\
\Rightarrow T_{n}^{(3)}(a)=6 c_{3}=f^{(3)}(a) \\
\vdots \\
T_{n}^{(n)}(x)=n!c_{n} \Rightarrow T_{n}^{(n)}(a)=n!c_{n}
\end{gathered}
$$

## Taylor Polynomial

We have
$c_{0}=f(a), c_{1}=f^{\prime}(a), c_{2}=\frac{1}{2!} f^{\prime \prime}(a), c_{3}=\frac{1}{3!} f^{(3)}(a), \ldots, c_{n}=\frac{1}{n!} f^{(n)}(a)$
and

$$
T_{n}(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots+c_{n}(x-a)^{n}
$$

we have that

$$
\begin{gathered}
f(x) \approx T_{n}(x)= \\
f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)+ \\
\frac{1}{3!} f^{(3)}(a)(x-a)^{3}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
\end{gathered}
$$

## Taylor Polynomial

## Taylor Polynomial

Let $a$ be a constant and let $n$ be a non-negative integer. The $n$th degree Taylor polynomial for $f(x)$ about $x=a$ is

$$
\begin{aligned}
& T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2} \\
& +\frac{1}{3!} f^{(3)}(a)(x-a)^{3}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
\end{aligned}
$$

or

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a)(x-a)^{k}
$$

The special case $a=0$ is called a Maclaurin polynomial.

## Outline - October 30, 2019

- Section 3.4.5: Some Examples of Taylor Polynomial
- Section 3.4.8: The Error in the Taylor Polynomial Approximations


## Taylor Polynomial

## Taylor Polynomial

Let $a$ be a constant and let $n$ be a non-negative integer. The $n$th degree Taylor polynomial for $f(x)$ about $x=a$ is

$$
\begin{aligned}
& T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2} \\
& +\frac{1}{3!} f^{(3)}(a)(x-a)^{3}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
\end{aligned}
$$

or

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a)(x-a)^{k}
$$

The special case $a=0$ is called a Maclaurin polynomial.

Approximating $f(x)$ by the 0th Taylor polynomial about $x=a$

$$
f(x) \approx T_{0}(x)=f(a) .
$$

Note that

$$
\begin{align*}
& =f(x)+f(a)-f(a) \\
& =f(a)+(f(x)-f(a)) \frac{(x-a)}{(x-a)}  \tag{2}\\
& =f(a)+\frac{f(x)-f(a)}{x-a}(x-a)
\end{align*}
$$

$$
f(x)=f(a)+\frac{f(x)-f(a)}{x-a}(x-a)
$$



There is $c$ strictly between $x$ and $a$ such that

$$
f^{\prime}(c)=\frac{f(x)-f(a)}{x-a}
$$

$f(x)=f(a)+f^{\prime}(c)(x-a)$ for some $c$ strictly between $a$ and $x$.

$$
f(x)=f(a)+f^{\prime}(c)(x-a) \text { for some } c \text { strictly between } a \text { and } x .
$$

$$
\Rightarrow f(x)-f(a)=f^{\prime}(c)(x-a) \Rightarrow f(x)-T_{0}(x)=f^{\prime}(c)(x-a)
$$

## The error in constant approximation

$$
R_{0}(x)=f(x)-T_{0}(x)=f^{\prime}(c)(x-a)
$$

for some $c$ strictly between $a$ and $x$

## The error in linear approximation

$$
R_{1}(x)=f(x)-T_{1}(x)=\frac{1}{2} f^{\prime \prime}(c)(x-a)^{2}
$$

for some $c$ strictly between $a$ and $x$

Lagrange remainder theorem: The error when approximating function is $T_{n}(x)$

$$
R_{n}(x)=f(x)-T_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}
$$

for some $c$ strictly between $a$ and $x$

Lagrange remainder theorem: The error when approximating function is $T_{n}(x)$

$$
R_{n}(x)=f(x)-T_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}
$$

for some $c$ strictly between $a$ and $x$

## Remark

Consider that $f(x)=R_{n}(x)+T_{n}(x)$ Therefore, 1. if $0 \leq R_{n}(x) \leq E$, then

$$
T_{n}(x) \leq f(x) \leq T_{n}(x)+E
$$

2. if $E \leq R_{n}(x) \leq 0$, then

$$
T_{n}(x)+E \leq f(x) \leq T_{n}(x)
$$

## Outline - Nov. 1, 2019

- Section 3.4.8: The Error in the Taylor Polynomial Approximations
- Section 3.5.1: Maxima and Minima

Lagrange remainder theorem: The error when approximating function is $T_{n}(x)$

$$
R_{n}(x)=f(x)-T_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}
$$

for some $c$ strictly between $a$ and $x$

## Accurate to $D$ decimal places

Generally we say that our estimate is "accurate to $D$ decimal places" when

$$
\mid \text { error } \mid<0.5 \times 10^{-D}
$$

Lagrange remainder theorem: The error when approximating function is $T_{n}(x)$

$$
R_{n}(x)=f(x)-T_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}
$$

for some $c$ strictly between $a$ and $x$

## Remark

Consider that $f(x)=R_{n}(x)+T_{n}(x)$ Therefore, 1. if $0 \leq R_{n}(x) \leq E$, then

$$
T_{n}(x) \leq f(x) \leq T_{n}(x)+E
$$

2. if $E \leq R_{n}(x) \leq 0$, then

$$
T_{n}(x)+E \leq f(x) \leq T_{n}(x)
$$

## Maximum and Minimum



## Continuity and global max/min




First one: Continuous/global min and max

Second one: Continuous/global min and max

Third one: Not continuous/global min/no global max

Forth one: Not continuous/global min/no global max

If $f^{\prime}(c)=0$, then $c$ is local max/min?!


The graph of the function $x^{5 / 3}-x^{2 / 3}$ for $-1 \leq x \leq 1$


## Outline - Nov. 6, 2019

- Section 2.13: MVT
- Section 3.6: Sketching Graphs


## Rolle's Theorem



## Rolle's Theorem

## Rolle's Theorem

Theorem
(CLP 2.13.1-Rolle's theorem) Let $f$ be a function such that

- $f$ is continuous on $[a, b]$,
- $f$ is differentiable on $(a, b)$,
- $f(a)=f(b)$.

Then there is a point $c$ between $a$ and $b$ so that $f^{\prime}(c)=0$.

The Mean Value Theorem (MVT)


## MVT

## The Mean Value Theorem

Theorem
(CLP 2.13.4-The mean value theorem) Let $f$ be a function such that

- $f$ is continuous on $[a, b]$, and
- $f$ is differentiable on $(a, b)$.

Then there is a point $c$ between $a$ and $b$ so that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

or equivalently,

$$
f(b)-f(a)=(b-a) f^{\prime}(c)
$$

## Rolle's Theroem and IVT

## Rolle's Theorem

## Theorem

(CLP 2.13.1-Rolle's theorem) Let $f$ be a function such that

- $f$ is continuous on $[a, b]$,
- $f$ is differentiable on $(a, b)$,
- $f(a)=f(b)$.

Then there is a point $c$ between $a$ and $b$ so that $f^{\prime}(c)=0$.

## Intermediate value theorem(IVT)

Theorem
Let $a<b$ and let $f(x)$ be a function that is continuous at all points $a \leq x \leq b$. If $Y$ is any number between $f(a)$ and
$f(b)$ then there exists some number $c \in[a, b]$ so that
$f(c)=Y$.

If $f^{\prime}(x)=0$ for all $x \in(a, b)$, then $f(x)$ is constant on $(a, b)$


## $f^{\prime}(x)>0$ then $f$ is increasing; $f^{\prime}(x)<0$ then $f$ is decreasing




When a critical or singular point of a continuous function is a local max/min


## Example



## Concave Up and Down



## Outline - Nov. 8, 2019

- Section 3.6: Sketching Graphs


## Different Level of Learning

- Learning Objectives: Be able to show that a differentiable function has exactly one or two (or more) zeros.



## Second Derivative Test



## Consider the graph of $x^{2}-5$



## Consider the graph of $x^{3}-3 x-1$



## $f(x)=x^{2}$ is even




## $f(x)=x^{3}$ is odd



## $f(x)=\sin (x)$ is periodic



## Outline - Nov. 13, 2019

- A Quick Review
- Section 3.6: Sketching Graphs


## Theorem

Let $f$ be a continuous function and $c$ be a singular or critical point. Then

- If $f^{\prime}$ changes from positive to negative at $c$, then $f$ has a local max at c.
- If $f^{\prime}$ changes from negative to positive at $c$, then $f$ has a local min at c.
- If $f^{\prime}$ does not change sign at $c$, then $c$ is not a local max or min.



## Theorem

- If $f^{\prime \prime}(x)>0$ on I, then it is CU on I.
- If $f^{\prime \prime}(x)<0$, then it is $C D$ on $I$.



## $f(x)=x^{2}$ is even




## $f(x)=x^{3}$ is odd




## $f(x)=\sin (x)$ is periodic



## Outline - Nov. 15, 2019

- Section 3.6: Sketching Graphs
- Section 3.7: Indeterminate forms and L'Hopital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x}= & \frac{0}{0}=? ? ? \quad \text { or } \quad \lim _{x \rightarrow+\infty} \frac{\ln (x)}{x}=\frac{\infty}{\infty}=? ? ? \\
& \lim _{x \rightarrow \infty}\left(1+\frac{3}{x}\right)^{x}=1^{\infty}=? ? ?
\end{aligned}
$$

## Check-List

- Sketching a graph. A good check-list for sketching a graph.
- Domain
- Intercepts
- Symmetry
- Asymptotes
- Singular and critical points; Increasing/Decreasing
- Concavity and inflection points


## Different Level of Learning

- Learning Objectives: Be able to do all steps in the check list and sketch the graph


Examples by You-Knowing what theorem or method you should use 4. Analyze:

Explain and Analyze Your Work
5. Evaluate:

Other's solution is Correct?
6. Create:

What questions do you give in the test?
$f(x)=\frac{x^{3}}{1-x^{2}} f^{\prime}(x)=\frac{x^{2}\left(3-x^{2}\right)}{\left(1-x^{2}\right)^{2}}, \quad$ and $\quad f^{\prime \prime}(x)=\frac{2 x\left(3+x^{2}\right)}{\left(1-x^{2}\right)^{3}}$.

| $(-\infty,-\sqrt{3})$ | $f^{\prime}(x)<0$ | $D$ | $f^{\prime \prime}(x)>0$ | $C U$ |
| :---: | :---: | :---: | :---: | :---: |
| $x=-\sqrt{3}$ | $f^{\prime}(x)=0$ | $\operatorname{Imin}$ | $f^{\prime \prime}(x)>0$ | $C U$ |
| $(-\sqrt{3},-1)$ | $f^{\prime}(x)>0$ | $I$ | $f^{\prime \prime}(x)>0$ | $C U$ |
| $x=-1$ | $N E$ | $S$ | $N E$ | $N E$ |
| $(-1,0)$ | $f^{\prime}(x)>0$ | $I$ | $f^{\prime \prime}(x)<0$ | $C D$ |
| $x=0$ | $f^{\prime}(x)=0$ | $C$ | $f^{\prime \prime}(x)=0$ | Inflection |
| $(0,1)$ | $f^{\prime}(x)>0$ | $I$ | $f^{\prime \prime}(x)>0$ | $C U$ |
| $x=1$ | $N E$ | $S$ | $N E$ | $N E$ |
| $(1, \sqrt{3})$ | $f^{\prime}(x)>0$ | $I$ | $f^{\prime \prime}(x)<0$ | $C D$ |
| $x=\sqrt{3}$ | $f^{\prime}(x)=0$ | $I \max$ | $f^{\prime \prime}(x)<0$ | $C D$ |
| $(\sqrt{3}, \infty)$ | $f^{\prime}(x)<0$ | $D$ | $f^{\prime \prime}(x)<0$ | $C D$ |

Asymptotes: $x=1$ and $x=-1$, Imax: $\left(\sqrt{3},-\frac{3 \sqrt{3}}{2}\right)$ and Imin: $\left(-\sqrt{3}, \frac{3 \sqrt{3}}{2}\right)$. Also $f(x)$ is odd.

$$
f(x)=\frac{x^{3}}{1-x^{2}}
$$



## Indeterminate forms and L'Hôpital's rule (CLP 3.7)

## Theorem

If $\lim _{x \rightarrow a} f(x)=K$ and $\lim _{x \rightarrow a} g(x)=L$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{K}{L} \quad \text { provided } L \neq 0
$$

As an Example:

$$
\lim _{x \rightarrow 2} \frac{x^{2}-1}{x+1}=\frac{3}{3}=1
$$

But what about this one

$$
\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-1}=\frac{0}{0}=? ? ? ? ?
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(x+1)} \\
& =\lim _{x \rightarrow 1} \frac{1}{x+1}=\frac{1}{2}
\end{aligned}
$$

What you can do with

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\frac{0}{0}=? ? ?
$$

$$
\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x}=\frac{0}{0}=? ? ? \quad \text { or } \quad \lim _{x \rightarrow+\infty} \frac{\ln (x)}{x}=\frac{\infty}{\infty}=? ? ?
$$

## Indeterminate,

Guillaume-Francois-Antoine Marquis de L'Hôpital (1661-1704)


- $\lim _{x \rightarrow 0^{+}} x \ln (x)$
- $\lim _{x \rightarrow \infty} x^{1 / x} \quad \bullet \lim _{x \rightarrow \infty}(1+3 / x)^{x}$
- $\lim _{x \rightarrow \infty} \sqrt{4 x^{2}+1}-\sqrt{x^{2}-3 x}$


## Outline - Nov. 18, 2019

- A Quick Review
- Section 3.7: Indeterminate Forms and L'Hôpital's Rule

By the end of this section you will be able to compute limits by using L'Hôpital's rule when it's needed:
(1) Change the indeterminate forms of types

$$
0 \times( \pm \infty) \quad 1^{\infty} \quad 0^{0} \quad \infty^{0} \quad \infty-\infty
$$

to indeterminate forms of types

$$
\pm \infty / \pm \infty \quad 0 / 0
$$

and then use L'Hôpital's rule,
(2) when it is better doing algebra than using L'Hôpital's rule.

## Indeterminate forms

$\pm \infty / \pm \infty$ and $0 / 0$ are two indeterminate forms. Some other types are,

$$
0 \times( \pm \infty) \quad 1^{\infty} \quad 0^{0} \quad \infty^{0} \quad \infty-\infty
$$

If we have any of the above indeterminate forms, it is more likely that we can change it to a limit that in that limit we only need to take care of a limit of the form

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
$$

and make it an indeterminate form of type $\pm \infty / \pm \infty$ and $0 / 0$, and then we can use L'Hôpital's rule.

## L'ôpital's rule

## (CLP 3.7.2-L'Hôpital's Rule)

Let $f$ and $g$ be differentiable functions and $a$ either be a real number or $\pm \infty$. Furthermore, suppose that either

- $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$, or
- $\lim _{x \rightarrow a} f(x)= \pm \lim _{x \rightarrow a} g(x)= \pm \infty$
then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided that limit on the right-hand-side exists or is $\pm \infty$.

## Outline - Nov. 20, 2019

- Section 3.5: Optimization

By the end of this section you will be able to translate some "real world" problems to calculus and then optimizing them (finding global max/min).

## In general to answer this kind of questions, you need to

- Draw a diagram.
- Variables—assign variables to the quantities in the problem.
- Find some relation between the variables.
- Reduce to a function of 1 variable.
- Find the domain, the possible values that can be assigned to the variable.
- Max/Min: find the absolute max/min by using methods that we have studied, for example "closed interval method."


## Cut-out squares and maximizing the volume



## The cylinder can be inscribed a sphere



## Cross a canal



Row to $C$, then run to $B$


## Outline - Nov. 22, 2019

- Section 3.5: Optimization

By the end of this section you will be able to translate some "real world" problems to calculus and then optimizing them (finding global max/min).

## In general to answer this kind of questions, you need to

- Draw a diagram.
- Variables-assign variables to the quantities in the problem.
- Find some relation between the variables.
- Reduce to a function of 1 variable.
- Find the domain, the possible values that can be assigned to the variable.
- Max/Min: find the absolute max/min by using methods that we have studied, for example "closed interval method."


## The cylinder can be inscribed a sphere



## Cross a canal



Row to $C$, then run to $B$


## Outline - Nov. 25, 2019

- Section 4.1: Antiderivative


## Learning Objectives

By the end of this section,

- given a derivative $\frac{d y}{d x}$, you will be able to find what is the original function $y=f(x)$;
- you will be able to find a function $F(x)$ such that $F^{\prime}(x)=f(x)$ and $F(b)=B$.

Are you here?

## Pre-assessment

We have $F^{\prime}(x)=4 x^{3}+1$ and $F(1)=10$. Then

1. $F(x)=x^{4}+x+10$
2. $F(x)=4 x^{4}+x+5$
3. $F(x)=x^{4}+x+8$
4. None of the above.

## Post-assessment

We have $F^{\prime}(x)=4 x^{3}+1$ and $F(1)=10$. Then

1. $F(x)=x^{4}+x+10$
2. $F(x)=4 x^{4}+x+5$
3. $F(x)=x^{4}+x+8$
4. None of the above.

## Summary

- The antiderivative of a function $f(x)$ is a function $F(x)$ that $F^{\prime}(x)=f(x)$; and
- the most general antiderivative is $F(x)+C$ where $C$ is an arbitrary constant.


## Pre-assessment

Find $F(x)$ if $F^{\prime \prime}(x)=6 x^{2}-18 x+14$ and $F(0)=-8, F(1)=$ $-\frac{5}{2}$.

1. $F(x)=\frac{1}{2} x^{4}-3 x^{3}+7 x^{2}-8$
2. $F(x)=\frac{1}{2} x^{4}-3 x^{3}+7 x^{2}+x-8$
3. $F(x)=2 x^{4}-3 x^{3}+7 x^{2}-8$
4. $F(x)=2 x^{4}-3 x^{3}+7 x^{2}+x-8$

## Post-assessment

Find $F(x)$ if $F^{\prime \prime}(x)=6 x^{2}-18 x+14$ and $F(0)=-8, F(1)=$ $-\frac{5}{2}$.

1. $F(x)=\frac{1}{2} x^{4}-3 x^{3}+7 x^{2}-8$
2. $F(x)=\frac{1}{2} x^{4}-3 x^{3}+7 x^{2}+x-8$
3. $F(x)=2 x^{4}-3 x^{3}+7 x^{2}-8$
4. $F(x)=2 x^{4}-3 x^{3}+7 x^{2}+x-8$

## Outline - Nov. 27, 2019

- Review


## Learning Objectives

- Be able to compute the derivative of $f(x)^{g(x)}$.
- Be able to recall the Newton's law of cooling and use it to solve some problem.
- Be able to solve some problem regarding related rates.
- Be able to find the $n$th degree Taylor polynomial of some differentiable function.

Are you here?
Go to www.menti.com and use the code 674703.

## Announcements

- Your final test contains ... and ... points.
- You will be assigned a seat number.
- The previous final test probably will be sent to you soon, this test was ... and the median was ... .
- Go to Math Learning Center MLC (Location: LSK 301 and 302) for help
https://www.math.ubc.ca/ MLC/

| Hours of tutoring service: |  |  |
| :--- | :--- | :--- |
| From Dec 10th till Dec | Monday - | $12: 00 \mathrm{pm}-$ |
| 17th, 2019: | Friday | $6: 00 \mathrm{pm}$ |


| Hours of tutoring service: |  |  |
| :--- | :--- | :--- |
| From Sep 13th till Dec | Monday - | $12: 00 \mathrm{pm}-$ <br> 5:0 <br> 9th, 2019: |

- My office hours: I will announce them on Friday.


## Example

## Go to www.menti.com and use the code 567227

Find

$$
\frac{d}{d x} x^{\sin (x)}
$$

1. $\frac{d}{d x} x^{\sin (x)}=\left(\ln x^{\cos (x)}+\frac{\sin (x)}{x}\right) x^{\sin (x)}$.
2. $\frac{d}{d x} x^{\cos (x)}=\left(\ln x^{\sin (x)}-\frac{\cos (x)}{x}\right) x^{\sin (x)}$.
3. $\frac{d}{d x} x^{\sin (x)}=\left(\ln x^{\sin (x)}+\frac{\cos (x)}{x}\right) x^{\sin (x)}$.
4. $\frac{d}{d x} x^{\sin (x)}=\left(\ln x^{\sin (x)}-\frac{\cos (x)}{x}\right) x^{\sin (x)}$.

## Newton's Law of Cooling

$$
\frac{d T}{d t}(t)=K[T(t)-A] .
$$

where $T(t)$ is the temperature of the object at time $t, A$ is the temperature of its surroundings, and $K$ is a constant of proportionality. Then

$$
T(t)=[T(0)-A] e^{K t}+A
$$

## Example

Go to www.menti.com and use the code 70062.
The temperature of a glass of iced tea is initially $5^{\circ}$. After 5 minutes, the tea has heated to $10^{\circ}$ in a room where the air temperature is $30^{\circ}$.
What is the temperature after 10 minutes?

1. 11
2. 12
3. 13
4. 14

## Related Rates

Go to www.menti.com and use the code 559926.
A ball is dropped from a height of 49 m above level ground. The height of the ball at time $t$ is $h(t)=49-4.9 t^{2} \mathrm{~m}$. A light, which is also 49 m above the ground, is 10 m to the left of the ball's original position. As the ball descends, the shadow of the ball caused by the light moves across the ground. How fast is the shadow moving one second after the ball is dropped?

1. -100
2. -200
3. 100
4. 200

## Taylor Polynomial

Let $a$ be a constant and let $n$ be a non-negative integer. The $n$th degree Taylor polynomial for $f(x)$ about $x=a$ is

$$
\begin{gathered}
T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+ \\
\frac{1}{3!} f^{(3)}(a)(x-a)^{3}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n} \\
T_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a)(x-a)^{k}
\end{gathered}
$$

The special case $a=0$ is called a Maclaurin polynomial.

## Maclaurin polynomial for $\sin (x)$

Go to www.menti.com and use the code 332427.
Example. Find the 5th degree Maclaurin polynomial for $\sin (x)$.

1. $T_{5}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}$
2. $T_{5}(x)=x+\frac{x^{3}}{3!}-\frac{x^{5}}{5!}$
3. $T_{5}(x)=x+\frac{x^{3}}{3}-\frac{x^{5}}{5}$
4. $T_{5}(x)=1+\frac{x^{2}}{2!}-\frac{x^{4}}{4!}$

Lagrange remainder theorem: The error when approximating function is $T_{n}(x)$

$$
R_{n}(x)=f(x)-T_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}
$$

for some $c$ strictly between $a$ and $x$

## Estimate $\ln (2)$

Go to www.menti.com and use the code 959878.
We use the third Taylor polynomial for $\ln (x)$ about $x=1$ to estimate $\ln (2)$. Then which of the following is more accurate.

1. $\left|R_{3}(2)\right| \leq 1$
2. $\left|R_{3}(2)\right| \leq \frac{1}{2}$
3. $\left|R_{3}(2)\right| \leq \frac{1}{4}$.
4. $\left|R_{3}(2)\right|=0$

## Outline - Nov. 29, 2019

- Review


## Learning Objectives

- Be able to find the $n$th degree Taylor polynomial of some differentiable function and use the Lagrange Remainder Theorem.
- Be able to recall how to sketch a graph and use it to sketch the graph of a function.

Are you here?
Go to www.menti.com and use the code 811850.

My office hours: Monday (Date: Dec 9, Time: 9-11 am), Tuesday, Wednesday (Dec 10-Dec 11) from 1:30 pm to 3:30 pm; location LSK 300.

## Taylor Polynomial

Let $a$ be a constant and let $n$ be a non-negative integer. The $n$th degree Taylor polynomial for $f(x)$ about $x=a$ is

$$
\begin{gathered}
T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+ \\
\frac{1}{3!} f^{(3)}(a)(x-a)^{3}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n} \\
T_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a)(x-a)^{k}
\end{gathered}
$$

The special case $a=0$ is called a Maclaurin polynomial.

## Third Taylor polynomial of $\ln (x)$

Go to www.menti.com and use the code 792942.
Which of the following is the third Taylor polynomial of $\ln x$ about $x=1$.

$$
\begin{aligned}
& \text { 1. } 1+(x-1)-\frac{1}{2}(x-1)^{2}+\frac{2}{3!}(x-1)^{3} \\
& \text { 2. } 1+(x-1)-\frac{1}{2}(x-1)^{2}-\frac{2}{3!}(x-1)^{3} \\
& \text { 3. }(x-1)-\frac{1}{2}(x-1)^{2}+\frac{2}{3!}(x-1)^{3} \\
& \text { 4. }(x-1)-\frac{1}{2}(x-1)^{2}-\frac{2}{3!}(x-1)^{3}
\end{aligned}
$$

## Domain

Go to www.menti.com and use the code 915415.
The domain of $f(x)=x(3-x)^{1 / 3}$ is
$\begin{array}{lll}\text { 1. } x \leq 3 & \text { 2. } x \geq 3 & \text { 3. } 0 \leq x \leq 3\end{array}$ 4. $\mathbb{R}$.
limits
Go to www.menti.com and use the code 824334.
Let $f(x)=x(3-x)^{1 / 3}$. Then $\lim _{x \rightarrow \infty} f(x)=\ldots$. and $\lim _{x \rightarrow \infty} f(x)=\ldots \ldots$

1. $-\infty,-\infty$
2. $\infty,-\infty$
3. $-\infty, \infty$
4. $\infty, \infty$

## Derivative of $f(x)$

Go to www.menti.com and use the code 463593.
Let $f(x)=x(3-x)^{1 / 3}$. Then

1. $\frac{d}{d x} f(x)=-\frac{4 x-9}{3(3-x)^{2 / 3}}$.
2. $\frac{d}{d x} f(x)=\frac{4 x-9}{3(3-x)^{2 / 3}}$.
3. $\frac{d}{d x} f(x)=(x-3)^{1 / 3}-\frac{1}{3(3-x)^{2 / 3}}$.
4. $\frac{d}{d x} f(x)=(x-3)^{1 / 3}+\frac{1}{3(3-x)^{2 / 3}}$.

## Singular/Critical

Go to www.menti.com and use the code 310669.
Let $f(x)=x(3-x)^{1 / 3}$. Then

1. $f(x)$ has a singular point at $x=2.25$ and a critical point at $x=3$.
2. $f(x)$ has singular points at $x=2.25$ and $x=3$.
3. $f(x)$ has a singular point at $x=3$ and a critical point at $x=2.25$.
4. $f(x)$ has critical points at $x=2.25$ and $x=3$.

## Global max/min

Go to www.menti.com and use the code 235474.
Let $f(x)=x(3-x)^{1 / 3}$. Find the global max/min (if any) of $f(x)$ on the interval [0,4]

1. $f(x)$ has a global max at $x=2.25$ and has a global $\min$ at $x=4$.
2. $f(x)$ has a global max at $x=4$ and has a global min at $x=2.25$.
3. $f(x)$ has a global max at $x=2.25$ and has no global min.
4. $f(x)$ has no global max and has a global $\min$ at $x=4$.

## Increasing/Decreasing

Go to www.menti.com and use the code 692612.
Let $f(x)=x(3-x)^{1 / 3}$. Find where the function $f(x)$ is increasing and where it is decreasing.

1. $f(x)$ is increasing on $(-\infty, 2.25) \cup(3, \infty)$, and it is decreasing on $(2.25,3)$.
2. $f(x)$ is decreasing on $(-\infty, 2.25) \cup(3, \infty)$, and it is increasing on $(2.25,3)$.
3. $f(x)$ is decreasing on $(-\infty, 2.25)$, and it is increasing on $(2.25, \infty)$.
4. $f(x)$ is increasing on $(-\infty, 2.25)$, and it is decreasing on $(2.25, \infty)$.

## Local max/min

Go to www.menti.com and use the code 45331.
Let $f(x)=x(3-x)^{1 / 3}$. Find the local max/min (if any) of $f(x)$.

1. $f(x)$ has a local min at $x=2.25$ and has a local max at $x=3$.
2. $f(x)$ has a local max at $x=2.25$ and has a local min at $x=3$.
3. $f(x)$ has a local max at $x=2.25$ and has no local min.
4. $f(x)$ has a local $\min$ at $x=3$ and has no local max.

## Second derivative

Go to www.menti.com and use the code 868243.
Let $f(x)=x(3-x)^{1 / 3}$. Find the second derivative of $f(x)$.

1. $f^{\prime \prime}(x)=\frac{-4 x-18}{9(3-x)^{5 / 3}}$
2. $f^{\prime \prime}(x)=\frac{4 x+18}{9(3-x)^{5 / 3}}$
3. $f^{\prime \prime}(x)=\frac{-4 x+18}{9(3-x)^{5 / 3}}$
4. $f^{\prime \prime}(x)=\frac{4 x-18}{9(3-x)^{5 / 3}}$

## Concavity

Go to www.menti.com and use the code 31911.
Let $f(x)=x(3-x)^{1 / 3}$. Where $f(x)$ is concave up and where it is concave down.

1. Concave down on $(-\infty, 4.5)$ and concave up $(4.5, \infty)$.
2. Concave down on $(-\infty, 3)$ and concave up $(3, \infty)$.
3. Concave down on $(-\infty, 3) \cup(4.5, \infty)$ and concave up $(3,4.5)$.
4. Concave up on $(-\infty, 3) \cup(4.5, \infty)$ and concave down on $(3,4.5)$.

Inflection points
Go to www.menti.com and use the code 665914.
Let $f(x)=x(3-x)^{1 / 3}$. Find the inflection point(s) of $f(x)$.

1. The function has only one inflection point at $x=3$.
2. The function has only one inflection point at $x=4.5$.
3. The function has inflection points at $x=3$ and $x=4.5$
4. The function has no inflection points.



Go to www.menti.com and use the code 455980.
Say your last words . . .

