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f (x) =


2x x < 3

9 x = 3

2x x > 3
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f (x) = sin(πx )
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f (x) =


x x < 2

−1 x = 2

x + 3 x > 2
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Example

Consider the graph of the
function f (x).

Then
lim

x→1−
f (x) =

lim
x→1+

f (x) =

lim
x→1

f (x) =

Example

Consider the graph of the
function g(t).

Then
lim
t→1−

g(t) =

lim
t→1+

g(t) =

lim
t→1

g(t) =
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Example

Consider the graph of the
function f (x).

Then

lim
x→1−

f (x) = 2

lim
x→1+

f (x) = 2

lim
x→1

f (x) = 2

Example

Consider the graph of the
function g(t).

Then

lim
t→1−

g(t) = 2

lim
t→1+

g(t) = −2

lim
t→1

g(t) = DNE
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When the limit goes to infinity

Example

Consider the graph for the
function f (x).

lim
x→a

f (x) = +∞

Example

Consider the graph for the
function g(x).

lim
x→a

g(x) = −∞
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Example

Consider the graph for the
function h(x).

lim
x→a−

h(x) =

lim
x→a+

h(x) =

Example

Consider the graph for the
function s(x).

lim
x→a−

s(x) =

lim
x→a+

s(x) =
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Example

Consider the graph for the
function h(x).

lim
x→a−

h(x) = +∞

lim
x→a+

h(x) = 3

Example

Consider the graph for the
function s(x).

lim
x→a−

s(x) = 3

lim
x→a+

s(x) = −∞
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Example

Consider the function

g(x) =
1

sin(x)
.

Find the one-side limits of this function as x → π.

lim
x→π−

1

sin(x)
= +∞

lim
x→π+

1

sin(x)
= −∞
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Second Session Outline

I Arithmetic of the Limits

I Limit of a ratio: what will happen if the limit of the
denominator is zero. For example,

lim
x→0

1

x2
? and lim

x→1

x3 − x2

x − 1
=?

I Sandwich/ Squeeze/Pinch Theorem

I limit at infinity
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Arithmetic of the Limits
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Theorem
Let a, c ∈ R. The following two limits hold

lim
x→a

c = c lim
x→a

x = a

Example

lim
x→3
− 2 = −2 lim

x→−1
x = −1
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Theorem
(Arithmetic of Limits) Let a, c ∈ R, let f (x) and g(x) be
defined for all x ’s that lie in some interval about a (but f
and g need not to be defined exactly at a).

lim
x→a

f (x) = F lim
x→a

g(x) = G

exists with F ,G ∈ R. Then the following limits hold

I lim
x→a

(f (x) + g(x)) = F + G –limit of the sum is the sum

of the limits.

I lim
x→a

(f (x)− g(x)) = F − G –limit of the difference is

the difference of the limits.

I lim
x→a

cf (x) = cF .

I lim
x→a

(f (x).g(x)) = F .G –limit of the product is the

product of the limits.
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If G 6= 0 then

lim
x→a

f (x)

g(x)
=

F

G
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Example

Given
lim
x→1

f (x) = 3 and lim
x→1

g(x) = 2

We have

lim
x→1

3f (x) =

3× lim
x→1

f (x) = 3× 3 = 9.

lim
x→1

3f (x)−g(x) = 3× lim
x→1

f (x)− lim
x→1

g(x) = 3×3−2 = 7.

lim
x→1

f (x)g(x) = lim
x→1

f (x). lim
x→1

g(x) = 3× 2 = 6.

lim
x→1

f (x)

f (x)− g(x)
=

limx→1 f (x)

limx→1 f (x)− limx→1 g(x)
=

3

3− 2
= 3.

16 / 266



Example

Given
lim
x→1

f (x) = 3 and lim
x→1

g(x) = 2

We have

lim
x→1

3f (x) = 3× lim
x→1

f (x) = 3× 3 = 9.

lim
x→1

3f (x)−g(x) =

3× lim
x→1

f (x)− lim
x→1

g(x) = 3×3−2 = 7.

lim
x→1

f (x)g(x) = lim
x→1

f (x). lim
x→1

g(x) = 3× 2 = 6.

lim
x→1

f (x)

f (x)− g(x)
=

limx→1 f (x)

limx→1 f (x)− limx→1 g(x)
=

3

3− 2
= 3.

16 / 266



Example

Given
lim
x→1

f (x) = 3 and lim
x→1

g(x) = 2

We have

lim
x→1

3f (x) = 3× lim
x→1

f (x) = 3× 3 = 9.

lim
x→1

3f (x)−g(x) = 3× lim
x→1

f (x)− lim
x→1

g(x) = 3×3−2 = 7.

lim
x→1

f (x)g(x) =

lim
x→1

f (x). lim
x→1

g(x) = 3× 2 = 6.

lim
x→1

f (x)

f (x)− g(x)
=

limx→1 f (x)

limx→1 f (x)− limx→1 g(x)
=

3

3− 2
= 3.

16 / 266



Example

Given
lim
x→1

f (x) = 3 and lim
x→1

g(x) = 2

We have

lim
x→1

3f (x) = 3× lim
x→1

f (x) = 3× 3 = 9.

lim
x→1

3f (x)−g(x) = 3× lim
x→1

f (x)− lim
x→1

g(x) = 3×3−2 = 7.

lim
x→1

f (x)g(x) = lim
x→1

f (x). lim
x→1

g(x) = 3× 2 = 6.

lim
x→1

f (x)

f (x)− g(x)
=

limx→1 f (x)

limx→1 f (x)− limx→1 g(x)
=

3

3− 2
= 3.

16 / 266



Example

Given
lim
x→1

f (x) = 3 and lim
x→1

g(x) = 2

We have

lim
x→1

3f (x) = 3× lim
x→1

f (x) = 3× 3 = 9.

lim
x→1

3f (x)−g(x) = 3× lim
x→1

f (x)− lim
x→1

g(x) = 3×3−2 = 7.

lim
x→1

f (x)g(x) = lim
x→1

f (x). lim
x→1

g(x) = 3× 2 = 6.

lim
x→1

f (x)

f (x)− g(x)
=

limx→1 f (x)

limx→1 f (x)− limx→1 g(x)
=

3

3− 2
= 3.

16 / 266



Example

lim
x→3

4x2 − 1 =

lim
x→2

x

x − 1
=
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Example

lim
x→3

4x2 − 1 = 4× lim
x→3

x2 − lim
x→3

1 = 35.

lim
x→2

x

x − 1
=

limx→2 x

limx→2 x − limx→1 1
=

2

2− 1
= 2.
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Limit of a ratio: what will happen if the limit
of the denominator is zero.
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Limit of a ratio: what will happen if the limit of
denominator is zero:

– the limit does not exist, eg.

lim
x→0

x

x2
= lim

x→0

1

x
= DNE

– the limit is ±∞, eg.

lim
x→0

x2

x4
= lim

x→0

1

x2
= +∞ or lim

x→0

−x2

x4
= lim

x→0

−1

x2
= −∞.

– the limit is 0, eg.

lim
x→0

x2

x
= lim

x→0
x = 0.

– the limit exists and it nonzero, eg.

lim
x→0

x

x
= 1.
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Theorem
Let n be a positive integer, let a ∈ R and let f be a function
so that

lim
x→a

f (x) = F

for some real number F . Then the following holds

lim
x→a

(f (x))n =
(

lim
x→a

f (x)
)n

= F n

so that the limit of a power is the power of the limit.

Similarly, if

I n is an even number and F > 0, or

I n is an odd number and F is any real number

then

lim
x→a

(f (x))1/n =
(

lim
x→a

f (x)
)1/n

= F 1/n.
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Example

lim
x→4

x1/2 =

lim
x→4

(−x)1/2 =

lim
x→2

(4x2 − 3)1/3 =
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Example

lim
x→4

x1/2 = 41/2 = 2.

lim
x→4

(−x)1/2 = −41/2 = not a real number.

lim
x→2

(4x2 − 3)1/3 = (4(2)2 − 3)1/3 = (13)1/3.
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Limit of a ratio: what will happen if the limit
of the numerator and denominator are zero,

for example,

lim
x→1

x3 − x2

x − 1
=?

24 / 266



lim
x→1

x3 − x2

x − 1
=?

25 / 266



Theorem
If f (x) = g(x) except when x = a then

lim
x→a

f (x) = lim
x→a

g(x)

provided the limit of g exists.

x3 − x2

x − 1
=

{
x2 x 6= 1

undefined x = 1.
⇒ lim

x→1

x3 − x2

x − 1
= lim

x→1
x2 = 1.
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Sandwich/ Squeeze/Pinch Theorem
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Example

Compute

lim
x→0

x2 sin(
π

x
)
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Example

Let f (x) be a function such that 1 ≤ f (x) ≤ x2 − 2x + 2. What is

lim
x→1

f (x)?

Solution
Consider that

lim
x→1

x = 1 and lim
x→1

x2 − 2x + 2 = 1.

Therefore, by the sandwich/pinch/squeeze theorem

lim
x→1

f (x) = 1.
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Example

We want to compute

lim
x→+∞

1

x
and lim

x→−∞

1

x

By plug in some large numbers into 1
x we have

−10000 −1000 −100|| ◦ ||100 1000 10000

−0.0001 −0.001 −0.01|| ◦ ||0.01 0.001 0.0001

We see that as x is getting bigger and positive the function 1
x is

getting closer to 0. Thus,

lim
x→+∞

1

x
= 0.

Moreover,

lim
x→−∞

1

x
= 0.
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Limit at Infinity
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Definition
(Informal limit at infinity.) We write

lim
x→∞

f (x) = L

when the value of the function f (x) gets closer and closer
to L as we make x larger and larger and positive.
Similarly, we write

lim
x→−∞

f (x) = L

when the value of the function f (x) gets closer and closer
to L as we make x larger and larger and negative.

32 / 266



Example

Consider the graph of the
function f (x).

Then
lim
x→∞

f (x) =

lim
x→−∞

f (x) =

Example

Consider the graph of the
function g(x).

Then
lim
x→∞

g(x) =

lim
x→−∞

g(x) =
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Example

Consider the graph of the
function f (x).

Then

lim
x→∞

f (x) = −2

lim
x→−∞

f (x) = 2

Example

Consider the graph of the
function g(x).

Then

lim
x→∞

g(x) = −2

lim
x→−∞

g(x) = +∞
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Review of the third session
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Review

Theorem
sandwich (or squeeze or pinch) Let a ∈ R and let f , g , h be
three functions so that

f (x) ≤ g(x) ≤ h(x)

for all x in an interval around a, except possibly at x = a. Then if

lim
x→a

f (x) = lim
x→a

h(x) = L

then it is also the case that

lim
x→a

g(x) = L.
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Example

Compute

lim
x→0

x2 sin(
π

x
)
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Theorem
Let c ∈ R then the following limits hold

lim
x→+∞

c = c lim
x→−∞

c = c

lim
x→+∞

1

x
= 0

lim
x→−∞

1

x
= 0.
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Outline For the Fourth Session

I Limit at Infinity
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Limit at Infinity

40 / 266



Theorem
Let f (x) and g(x) be two functions for which the limits

lim
x→∞

f (x) = F lim
x→∞

= G

exist. Then the following limits hold

lim
x→∞

(f (x) + g(x)) = F ± G

lim
x→∞

f (x)g(x) = FG

lim
x→∞

f (x)

g(x)
=

F

G
provided G 6= 0
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and for rational numbers r ,

lim
x→∞

(f (x))r = F r

provided that f (x)r is defined for all x .
The analogous results hold for limits to −∞.
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Warning: Consider that

lim
x→+∞

1

x1/2
= 0

However,

lim
x→+∞

1

(−x)1/2

does not exist because x1/2 is not defined for x < 0.
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f (x) = x2−3x+4
3x2+8x+1
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√
x2 = |x | =

{
x x ≥ 0

−x x < 0.
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y =

√
4x2 + 1

5x − 1
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Theorem
Let a, c,H ∈ R and let f , g , h be functions defined in an interval
around a (but they need not be defined at x = a), so that

lim
x→a

f (x) = +∞ lim
x→a

g(x) = +∞ lim
x→a

h(x) = H

1.
lim
x→a

(f (x) + g(x)) =

2.
lim
x→a

(f (x) + h(x)) =

3.
lim
x→a

(f (x)− g(x)) =

4.
lim
x→a

(f (x)− h(x)) =
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Theorem
Let a, c,H ∈ R and let f , g , h be functions defined in an interval
around a (but they need not be defined at x = a), so that

lim
x→a

f (x) = +∞ lim
x→a

g(x) = +∞ lim
x→a

h(x) = H

1.
lim
x→a

(f (x) + g(x)) = +∞.

2.
lim
x→a

(f (x) + h(x)) = +∞.

3.
lim
x→a

(f (x)− g(x)) = undetermined.

4.
lim
x→a

(f (x)− h(x)) = +∞.
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Theorem

5.

lim
x→a

cf (x) =


c > 0

c = 0

c < 0

6.
lim(f (x).g(x)) =

7.

lim
x→a

(f (x).h(x)) =


H > 0

H = 0

H < 0

8.

lim
x→a

h(x)

f (x)
=
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Theorem

5.

lim
x→a

cf (x) =


+∞ c > 0

0 c = 0

−∞ c < 0

6.
lim(f (x).g(x)) = +∞.

7.

lim
x→a

(f (x).h(x)) =


+∞ H > 0

undetermined H = 0

−∞ H < 0

8.

lim
x→a

h(x)

f (x)
= 0.
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Example

Consider the following three functions:

f (x) = x−2 g(x) = 2x−2 h(x) = x−2 − 1.

Then

lim
x→0

f (x) = +∞ lim
x→0

g(x) = +∞ lim
x→0

h(x) = +∞.

Then

1.
lim
x→0

(f (x)− g(x)) =

2.
lim
x→0

(f (x)− h(x)) =

3.
lim
x→0

(g(x)− h(x)) =
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Example

Consider the following three functions:

f (x) = x−2 g(x) = 2x−2 h(x) = x−2 − 1.

Then

lim
x→0

f (x) = +∞ lim
x→0

g(x) = +∞ lim
x→0

h(x) = +∞.

Then

1.
lim
x→0

(f (x)− g(x)) = lim
x→0

x−2 =∞

2.
lim
x→0

(f (x)− h(x)) = lim
x→0

(1) = 1

3.
lim
x→0

(g(x)− h(x)) = lim
x→0

x−2 + 1 =∞
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Outline For the Session Five

I Limit at Infinity

I Continuity

I Continuous from the left and from the right

I Arithmetic of continuity

I continuity of composites

I Intermediate Value Theorem
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Example

lim
x→0

1

x2
=∞

x −0.1 −0.01 −0.001 0 0.001 0.01 0.1

1
x2

100 10000 106 106 10000 100

Consider that if

lim
x→a

f (x) =∞ lim
x→a

g(x) =∞

Then
lim
x→a

(f (x)− g(x)) = undetermined
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Continuity
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f (x) =

{
x x < 1

x + 2 x ≥ 1

jump discontinuity
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g(x) =

{
1
x2 x 6= 0

0 x = 0

infinite discontinuity
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h(x) =

{
x3−x2

x−1 x 6= 1

0 x = 1

removable discontinuity
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Outline - September 16, 2019

I Section 1.6:
I Arithmetic of continuity
I Continuity of composites
I Intermediate Value Theorem

I Section 2.1:
I Revisiting tangent lines
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Arithmetic of continuity

61 / 266



Theorem
(Arithmetic of continuity) Let a, c ∈ R and let f (x) and
g(x) be functions that are continuous at a. Then the
following functions are also continuous at x = a.

I f (x) + g(x) and f (x)− g(x),

I cf (x) and f (x)g(x), and

I f (x)
g(x) provided g(a) 6= 0.
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Intermediate value theorem(IVT)
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Theorem
(Intermediate value theorem(IVT))

65 / 266



The existence not the uniqueness of c in IVT
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Not continuous functions at [a, b] do not satisfy IVT
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Revisiting tangent lines
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Revisiting tangent lines

lim
h→0

f (1 + h)− f (1)

h
← slope of the tangent line at x = 1
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Definition of the derivative

I

lim
h→0

f (a + h)− f (a)

h
I

lim
x→a

f (x)− f (a)

x − a
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Examples

I f (x) = c

I f (x) = x

I f (x) = x2

I f (x) = 1
x

I f (x) =
√

x

I f (x) = |x |
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y = 1
x and its derivative − 1

x2

y =
1

x
y =

−1

x2
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Tangent lines to y =
√
x
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The derivative of the function f (x) = |x |: not
differentiable at x = 0

The derivative of the function f (x) = |x |
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Where a function is not differentiable at x = a?

I Having a Sharp Corner at x = a

I The function is not continuous at x = a

I Having a tangent line, but the slope of the tangent line
at x = a is infinity
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Outline - September 20, 2019

I Section 2.2:
I Not differentiable examples
I The relation between continuous and differentiable functions

I Section 2.3:
I Interpretations of the derivative
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Where a function is not differentiable at x = a?

I Having a Sharp Corner at x = a

I The function is not continuous at x = a

I Having a tangent line, but the slope of the tangent line
at x = a is infinity
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An example of a discontinuous and not differentiable
function

H(x) =

{
1 x > 0

0 x ≤ 0
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An example of a function with a tangent line with slope
infinity at x = 0
f (x) = x1/3
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An example of a continuous and not differentiable function
y =

√
|x |
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Instantaneous rate of change

81 / 266



average rate of change of f (t) from t = a to t = a + h is

change in f (t) from t = a to t = a + h

length of time from t = a to t = a + h

=
f (a + h)− f (a)

h
.

And so

instantaneous rate of change of f (t) at t = a

= lim
h→0

[average rate of change of f (t) from t = a to t = a + h]

= lim
h→0

f (a + h)− f (a)

h
= f ′(a).
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Finding tangent line to a curve at x = a

y = f (a) + f ′(a)(x − a)
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Outline - September 23, 2019

I Section 2.4 and 2.5:
I Derivative of some simple functions
I Tools
I Examples
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A list of derivative of some simple functions:

d

dx
1 = 0

d

dx
x = 1

d

dx
x2 = 2x

d

dx

√
x =

1

2
√

x
.

Tools

Let f (x) and g(x) be differentiable functions and let c , d ∈ R.

I d
dx {f (x) + g(x)} = f ′(x) + g ′(x)

I d
dx {f (x)− g(x)} = f ′(x)− g ′(x)

I d
dx {cf (x)} = cf ′(x)
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Tools

Let f (x), g(x), and h(x) be differentiable functions and let
c , d ∈ R.

I d
dx {f (x)g(x)} = f ′(x)g(x) + g ′(x)f (x)

I d
dx {

f (x)
g(x)} = f ′(x)g(x)−g ′(x)f (x)

g(x)2
g(x) 6= 0

I d
dx {cf (x) + dg(x)} = cf ′(x) + dg ′(x)

I d
dx {f (x)2} = 2f (x)f ′(x)

I d
dx {

1
g(x)} = −g ′(x)

g(x)2
g(x) 6= 0

I d
dx {f (x)g(x)h(x)} =
f ′(x)g(x)h(x) + f (x)g ′(x)h(x) + f (x)g(x)h′(x)

I d
dx {f (x)n} = nf n−1(x)f ′(x)

I Let a be a rational number, then

d

dx
xa = axa−1.
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Outline - September 25, 2019

I Section 2.7 and 2.8:
I Derivative of exponential functions
I Derivative of trigonometric functions
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The graph of ex
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The graph of qx where q > 1
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YOUR TURN!

Example

Find a such that the following function is continuous.

f (x) =

{
ex+a x < 0
√

x + 1 x ≥ 0
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Example

We have

1. logq(xy) =

(a) logq(x) + logq(y)
(b) logq(x) logq(y)

2. logq(x/y) =

3. logq(x r ) =
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Example

We have

1. logq(xy) = logq(x) + logq(y).
The reason for this is that

qlogq(xy) = xy = qlogq(x)qlogq(y) = qlogq(x)+logq(y)

Therefore, logq(xy) = log(x) + log(y).

2. logq(x/y) = logq(x)− logq(y)

3. logq(x r ) = r logq(x)
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TOOLS:

d

dx
(f ◦ g)(x) = g ′(x)f ′(g(x))

A list of derivative of some simple functions:

d

dx
ex = ex

d

dx
ax = (loge a)ax
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Example

Find the derivative of 2
√
x .

Example

Find a and b such that the following function is differentiable.

f (x) =

{
x3 + a x < 1

ex−1 + bx x ≥ 1
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Example

Find the derivative of 2
√
x .

Example

Find a and b such that the following function is differentiable.

f (x) =

{
x3 + a x < 1

ex−1 + bx x ≥ 1
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Outline - September 30, 2019

I Section 2.8, 2.9, 0.6:
I Derivative of trigonometric functions
I The chain rule
I inverse of a function

A list of derivative of some simple functions:

d

dx
ex = ex

d

dx
ax = (loge a)ax
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sin(x) domain = R range = [−1, 1]
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cos(x) domain = R range = [−1, 1]
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tan(x) =
sin(x)

cos(x)
domain = R−{(2n+1)

π

2
: n ∈ Z} range = R
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cot(x) =
cos(x)

sin(x)
domain = R− {nπ : n ∈ Z} range = R
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sec(x) =
1

cos(x)
domain = R− {(2n + 1)

π

2
: n ∈ Z}

range = R− (−1, 1)
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csc(x) =
1

sin(x)
domain = R−{nπ : n ∈ Z} range = R−(−1, 1)
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Derivative of sin(x)

Question: Knowing that

cos h ≤ sin h

h
≤ 1

compute the derivative of sin(x) at x = 0.

(sandwich (or squeeze or pinch) theorem ) Let a ∈ R and
let f , g , h be three functions so that f (x) ≤ g(x) ≤ h(x) for
all x in an interval around a, except possibly at x = a. Then
if

lim
x→a

f (x) = lim
x→a

h(x) = L

then it is also the case that

lim
x→a

g(x) = L.
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An example of the application of the chain rule

I Your position at time t is x(t).

I The temperature of the air at position x is f (x).

I The temperature that you feel at time t is F (t) = f (x(t)).

I The instantaneous rate of change of temperature that you feel
is F ′(t).
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The chain rule

Theorem
Let f and g be differentiable functions then

d

dx
f (g(x)) = f ′(g(x)).g ′(x)

The chain rule

Theorem
Let y = f (u) and u = g(x) be differentiable functions, then

dy

dx
=

dy

du

du

dx
.
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Outline - October 2, 2019

I Section 0.6, 2.10:
I Inverse of a function
I Natural logarithm
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input number x 7→ f does “stuff” to x 7→ return number y

take output y 7→ do “stuff” to y 7→ return the original
number x
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One-to-one functions

R → R
x 7→ x3

R → R
x 7→ x2

[0,∞] → R
x 7→ x2
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One-to-one functions

R → R
x 7→ x3

R → R
x 7→ x2

[0,∞) → R
x 7→ x2

is one-to-one is not one-to-one is one-to-one
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Inverse of a functions
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Inverse of a functions
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Inverse of sin(x)

I sin(x) is not invertible on the domain R because it is not
one-to-one.

I If we look at sin(x) on the domain [−π/2, π/2], then it is
one-to-one, and so it is has an inverse.

I The inverse of sin(x) is arcsin(x) on the domain [−1, 1] and
with the range [−π/2, π/2].
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How to find the inverse of a function by its graph
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aloga x = x

Remember that for a > 1,

aloga x = x ,

loga x =
loge x

loge a
.
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The inverse of ex
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Outline - October 4, 2019

I Section 2.10 and 2.11:
I Natural logarithm
I Implicit derivative
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Useful facts!

I d
dx ax = (ln a)ax .

I loga x = ln x
ln a ln x = loga x

loga e
a > 1.

I ln(xy) = ln x + ln y .

I ln(x/y) = ln x − ln y .

I ln x r = r ln x .

I d
dx ln x = 1

x .

I d
dx ln |x | = 1

x .

I d
dx loga x = 1

x . ln a .

I d
dx ln f (x) = f ′(x)

f (x)

I d
dx |f (x)| = f ′(x)

f (x) .
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Outline - October 7, 2019

I Section 2.11 and 2.12:
I Implicit derivative
I Derivative of Trig functions
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Implicit derivative

d

dx
x =

d

dx
e ln x (

d

dx
x =

d

dx
ey )

which is the same as

1 = (
d

dx
ln x).e ln x (1 = y ′ey ).

Note that e ln x = x(ey = x), thus

1 = (
d

dx
ln x).x (1 = y ′x)

and so
d

dx
ln x =

1

x
(y ′ =

1

x
).
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3x3 + 5y 2 = 7
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x2 − xy + y 2 = 3
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x2/3 + y 2/3 = 1
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Outline - October 9, 2019

I Section 2.12:
I Derivative of Trig functions
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Review of the inverse of a function

Remember that the inverse of a one-to-one function f (x) with
domain A and range B is a function g(x) with domain B and
range A such that

f (g(y)) = y g(f (x)) = x x ∈ A, y ∈ B.
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Trigonometry
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arcsin(sin(x))

arcsin(sin(x)) = the unique angle θ between −π/2 and π/2
obeying that

sin(x) = sin(θ).
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What is arcsin(sin(11π
16 ))?
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cos(arcsin(x)) =
√

1− x2
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Inverse of sin(x)
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Inverse of cos(x)
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Inverse of tan(x)
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Inverse of cotan(x)
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Inverse of sec(x)

arcsec(x) = arccos(1/x)
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Inverse of csc(x)

arccsc(x) = arcsin(1/x)
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sin(θ) = sin(arccos(x)) =
√

1− x2
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cos2(arctan(x)) = cos2(θ) =
1

1 + x2
.
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1

csc2(θ)
= sin2(θ) = 1 + x2
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Outline - October 11, 2019

I Section 3.1:
I Derivative of Trig functions
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Inverse of csc(x)

arccsc(x) = arcsin(1/x)
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Derivative of the inverses of trigonometric functions in a nut-
shell

In a nutshell the derivatives of the inverse trigonometric func-
tions are

d

dx
arcsin(x) =

1√
1− x2

d

dx
arccsc(x) = − 1

|x |
√

x2 − 1

d

dx
arccos(x) = − 1√

1− x2

d

dx
arcsec(x) =

1

|x |
√

x2 − 1

d

dx
arctan(x) =

1

1 + x2

d

dx
arccot(x) = − 1

1 + x2
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The Application of Derivatives

Velocity and Acceleration

If you are moving along the x-axis and your position at time
t is x(t), then

I your velocity at time t is v(t) = x ′(t) and

I your acceleration at time t is a(t) = v ′(t) = x ′′(t).
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Direction of your move with x(t) = t3 − 3t + 2

t (t − 1)(t + 1) x ′(t) = 3(t − 1)(t + 1) Direction

t < −1 positive positive right

t = −1 zero zero halt

−1 < t < 1 negative negative left

t = 1 zero zero halt

t > 1 positive positive right

And here is a schematic picture of the whole trajectory.
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Direction of your move with x(t) = t3 − 12t + 5

t (t − 2)(t + 2) x ′(t) = 3(t − 2)(t + 2) Direction

t < −2 positive positive right

t = −2 zero zero halt

−2 < t < 2 negative negative left

t = 2 zero zero halt

t > 2 positive positive right

t your positionx(t) x ′(t) Direction

0 5 negative left

t = 2 −11 zero halt

t = 10 885 positive right
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Outline - October 16, 2019

I Section 3.2: Exponential Growth and Decay
I 3.1: Carbon Dating

EXAM: Friday, October 18, Here in Class, at 2pm
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Carbon Dating

Cosmic ray hitting atmosphere
Nitrogen (N)→ Carbon(C )

Vegetation absorbs C through photosynthesis

Animals acquire C by eating plants

C decreases when animal dies
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More precisely, let Q(t) denote the amount of C (an element)
in the plant or animal t years after it dies. The number of
radioactive decays (rate of change) per unit time, at time t,
is proportional to the amount of C present at time t, which
is Q(t). Thus

Radioactive Decay

dQ

dt
(t) = −kQ(t) (1)
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Corollary

The function Q(t) satisfies the equation

dQ

dt
= −kQ(t)

if and only if
Q(t) = Q(0).e−kt

The half-life (the half-life of C is the length of time that it
takes for half of the C to decay) is defined to be the time t1/2
which obeys

Q(t1/2) =
1

2
.Q(0).

The half-life is related to the constant k by

t1/2 =
ln 2

k
.
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Outline - October 21, 2019

I Section 3.3.2: Newton’s Law of Cooling
I 3.1: Newton’s Law of Cooling

147 / 266



No pain no gain

Principles (Ray Dalio)
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Most people
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Successful person
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Newton’s Law of Cooling
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dT
dt (t) = K [T (t)− A] .

We have three possibilities:

I T (t) > A⇒ [T (t)− A] > 0, thus the temperature of
the body is decreasing, so dT

dt must be negative, since
dT
dt (t) = K [T (t)− A], we must have K < 0.

I T (t) < A⇒ [T (t)− A] < 0, thus the temperature of
the body is increasing, so dT

dt must be positive, since
dT
dt (t) = K [T (t)− A], we must have K < 0.

I T (t) = A⇒ [T (t)− A] = 0, thus the temperature of
the body is no changing, so dT

dt must be zero, since
dT
dt (t) = K [T (t)− A]. This does not impose any

condition on K .
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Newton’s Law of Cooling

Corollary

A differentiable function T (t) obeys the differential equation

dT

dt
(t) = K [T (t)− A]

if and only if

T (t) = [T (0)− A]eKt + A.
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Outline - October 23, 2019

I Section 3.3.3: Population Growth

I Section 3.2: Related Rates
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Population Growth

Suppose that we wish to predict the size P(t) of a population as a
function of the time t. So suppose that in average each couple
produces β offspring (for some constant β) and then dies. Then
over the course of one generation since we have P(t)/2 couples
and each have produced β offspring, thus the population of the
children of one generation is

β
P(t)

2
.

Let tg be the life span of one generation, then

P(t + tg ) = β
P(t)

2

= P(t) + β
P(t)

2
− P(t).
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Therefore,

P(t + tg )− P(t) = β
P(t)

2
− P(t)

and so dividing both sides by tg , we have

P(t + tg )− P(t)

tg
=

1

tg

(
β

2
P(t)− P(t)

)
=

1

tg

(
β

2
− 1

)
P(t)

Let 1
tg

(
β
2 − 1

)
= b, then

P(t + tg )− P(t)

tg
= bP(t).

Approximately, we have

dP

dt
= bP(t).

Moreover, same as the model for carbon dating we can write

P(t) = P(0)ebt .
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Malthusian growth model

Malthusian growth model

The model for the population growth is

dP

dt
= bP(t)

and P(t) satisfies the above equation if and only if

P(t) = P(0)ebt .
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Related Rates

Volume of a sphere

Remember that the volume of a sphere with radius r is

V =
4

3
πr3.
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Helium Balloon

160 / 266



Ladder
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Outline - October 25, 2019

I Section 3.2: Related Rates: An Example

I Section 3.4.2 The Linear Approximation

I Section 3.4.3 The Quadratic Approximation
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Shadow of the Ball
Similar triangles-ratio
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Approximation

This figure shows that the curve y = x and y = sin(x) are almost
the same when x is close to 0. Hence if we want the value of
sin(1/10) we just use this approximation y = x to get

sin(1/10) ≈ 1/10.
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The linear approximation

Given a function f (x) we want to have the approximating function
to be a linear function that is F (x) = A + Bx for some constants A
and B.
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The linear approximation

f (x) ≈ F (x) = f (a) + f ′(a)(x − a)

Example

Estimate e0.01? So f (x) = ex and a = 0.
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The quadratic approximation

In linear approximation we had

f (x) ≈ F (x) = f (a) + f ′(a)(x − a)⇒

f (a) = F (a) and f ′(a) = F ′(a).

We now want our approximation function to be a quadratic
function of x , that is, F (x) = A + Bx + Cx2. To have a good
approximating function we choose A,B, and C so that

I f (a) = F (a)

I f ′(a) = F ′(a)

I f ′′(a) = F ′′(a)
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These conditions give us the following equations

F (x) = A + Bx + Cx2 ⇒ F (a) = A + Ba + Ca2 = f (a)

F ′(x) = B + 2Cx ⇒ F ′(a) = B + 2Ca = f ′(a)

F ′′(x) = 2C ⇒ F ′(a) = 2C = f ′′(a)

Solving these equation we can write A, B, and C in terms of f (a),
f ′(a), and f ′′(a). So that

C =
1

2
f ′′(a)

B = f ′(a)− af ′′(a)

A = f (a)− a[f ′(a)− af ′′(a)]− 1

2
f ′′(a)a2.
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Consider that F (x) = A + Bx + CX 2, substituting A, B, and C , we
obtain

Quadratic Approximation

F (x) = f (a) + f ′(a)(x − a) +
1

2
f ′′(a)(x − a)2.

Therefore,

f (x) ≈ f (a) + f ′(a)(x − a) +
1

2
f ′′(a)(x − a)2.
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Outline - October 28, 2019

I Section 3.4.3 The Quadratic Approximation

I Section 3.4.4 Taylor Polynomials

I Section 3.4.5 Some Examples
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Linear Approximation

Approximate f (x) by F (x) = c0 + c1(x − a) such that

1. F (a) = f (a)

2. F ′(a) = f ′(a)

Then
F (a) = c0 = f (a) F ′(a) = c1 = f ′(a).

And so
F (x) = f (a) + f ′(a)(x − a).
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Linear Approximation
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Quadratic Approximation

Approximate f (x) by F (x) = c0 + c1(x − a) + c2(x − a)2 such that

1. F (a) = f (a)

2. F ′(a) = f ′(a)

3. F ′′(a) = f ′′(a)

Then

F (a) = c0 = f (a) F ′(a) = c1 = f ′(a) F ′′(a) = 2c2 = f ′′(a).

And so

F (x) = f (a) + f ′(a)(x − a) +
1

2
f ′′(a)(x − a)2.
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Quadratic Approximation

Approximate f (x) by F (x) = c0 + c1(x − a) + c2(x − a)2 such that

1. F (a) = f (a)

2. F ′(a) = f ′(a)

3. F ′′(a) = f ′′(a)

Then

F (a) = c0 = f (a) F ′(a) = c1 = f ′(a) F ′′(a) = 2c2 = f ′′(a).

And so

F (x) = f (a) + f ′(a)(x − a) +
1

2
f ′′(a)(x − a)2.

172 / 266



Quadratic Approximation

Approximate f (x) by F (x) = c0 + c1(x − a) + c2(x − a)2 such that

1. F (a) = f (a)

2. F ′(a) = f ′(a)

3. F ′′(a) = f ′′(a)

Then

F (a) = c0 = f (a) F ′(a) = c1 = f ′(a) F ′′(a) = 2c2 = f ′′(a).

And so

F (x) = f (a) + f ′(a)(x − a) +
1

2
f ′′(a)(x − a)2.

172 / 266



Taylor Polynomial

We want to approximate f (x) with a polynomial Tn(x) of degree n
of the form

Tn(x) = c0 + c1(x − a) + · · ·+ cn(x − a)n

such that

1. Tn(a) = f (a),

2. T ′n(a) = f ′(a),
...

n. T
(n)
n (a) = f (n)(a).
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Taylor Polynomial

Tn(x) = c0 + c1(x − a) + · · ·+ cn(x − a)n ⇒ Tn(a) =

c0 = f (a)

T ′n(x) = c1+2c2(x−a)+ · · ·+ncn(x−a)n−1 ⇒ T ′n(a) = c1 = f ′(a)

T ′′n (x) = 2c2 + 3× 2c3(x − a) + · · ·+ n(n − 1)cn(x − a)n−2

⇒ T ′′n (a) = 2c2 = f ′′(a)

T
(3)
n (x) = 3× 2c3 + 4× 3× 2c4(x − a) + · · ·+ n(n− 1)cn(x − a)n−2

⇒ T
(3)
n (a) = 6c3 = f (3)(a)

...

T
(n)
n (x) = n!cn ⇒ T

(n)
n (a) = n!cn
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Taylor Polynomial
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Taylor Polynomial
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Taylor Polynomial
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Taylor Polynomial

We have

c0 = f (a), c1 = f ′(a), c2 =
1

2!
f ′′(a), c3 =

1

3!
f (3)(a), . . . , cn =

1

n!
f (n)(a)

and

Tn(x) = c0 + c1(x − a) + c2(x − a)2 + · · ·+ cn(x − a)n

we have that
f (x) ≈ Tn(x) =

f (a) + f ′(a)(x − a) +
1

2!
f ′′(a)(x − a)+

1

3!
f (3)(a)(x − a)3 + · · ·+ 1

n!
f (n)(a)(x − a)n

175 / 266



Taylor Polynomial

Taylor Polynomial

Let a be a constant and let n be a non-negative integer. The
nth degree Taylor polynomial for f (x) about x = a is

Tn(x) = f (a) + f ′(a)(x − a) +
1

2!
f ′′(a)(x − a)2

+
1

3!
f (3)(a)(x − a)3 + · · ·+ 1

n!
f (n)(a)(x − a)n

or

Tn(x) =
n∑

k=0

1

k!
f (k)(a)(x − a)k

The special case a = 0 is called a Maclaurin polynomial.
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Outline - October 30, 2019

I Section 3.4.5: Some Examples of Taylor Polynomial

I Section 3.4.8: The Error in the Taylor Polynomial
Approximations
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Taylor Polynomial

Taylor Polynomial

Let a be a constant and let n be a non-negative integer. The
nth degree Taylor polynomial for f (x) about x = a is

Tn(x) = f (a) + f ′(a)(x − a) +
1

2!
f ′′(a)(x − a)2

+
1

3!
f (3)(a)(x − a)3 + · · ·+ 1

n!
f (n)(a)(x − a)n

or

Tn(x) =
n∑

k=0

1

k!
f (k)(a)(x − a)k

The special case a = 0 is called a Maclaurin polynomial.
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Approximating f (x) by the 0th Taylor polynomial about
x = a

f (x) ≈ T0(x) = f (a).

Note that

f (x)

= f (x) + f (a)− f (a)

= f (a) + (f (x)− f (a))
(x − a)

(x − a)

= f (a) +
f (x)− f (a)

x − a
(x − a)

(2)
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f (x) = f (a) + f (x)−f (a)
x−a (x − a)

There is c strictly between x and a such that

f ′(c) =
f (x)− f (a)

x − a
.

f (x) = f (a)+f ′(c)(x−a) for some c strictly between a and x .
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f (x) = f (a)+f ′(c)(x−a) for some c strictly between a and x .

⇒ f (x)− f (a) = f ′(c)(x − a)⇒ f (x)− T0(x) = f ′(c)(x − a)

The error in constant approximation

R0(x) = f (x)− T0(x) = f ′(c)(x − a)

for some c strictly between a and x
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The error in linear approximation

R1(x) = f (x)− T1(x) =
1

2
f ′′(c)(x − a)2

for some c strictly between a and x

Lagrange remainder theorem: The error when approxi-
mating function is Tn(x)

Rn(x) = f (x)− Tn(x) =
1

(n + 1)!
f (n+1)(c)(x − a)n+1

for some c strictly between a and x
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Lagrange remainder theorem: The error when approxi-
mating function is Tn(x)

Rn(x) = f (x)− Tn(x) =
1

(n + 1)!
f (n+1)(c)(x − a)n+1

for some c strictly between a and x

Remark

Consider that f (x) = Rn(x) + Tn(x) Therefore,

1. if 0 ≤ Rn(x) ≤ E , then

Tn(x) ≤ f (x) ≤ Tn(x) + E .

2. if E ≤ Rn(x) ≤ 0, then

Tn(x) + E ≤ f (x) ≤ Tn(x).
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Outline - Nov. 1, 2019

I Section 3.4.8: The Error in the Taylor Polynomial
Approximations

I Section 3.5.1: Maxima and Minima
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Lagrange remainder theorem: The error when approxi-
mating function is Tn(x)

Rn(x) = f (x)− Tn(x) =
1

(n + 1)!
f (n+1)(c)(x − a)n+1

for some c strictly between a and x

Accurate to D decimal places

Generally we say that our estimate is “accurate to D decimal
places” when

|error | < 0.5× 10−D .
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Lagrange remainder theorem: The error when approxi-
mating function is Tn(x)

Rn(x) = f (x)− Tn(x) =
1

(n + 1)!
f (n+1)(c)(x − a)n+1

for some c strictly between a and x

Remark

Consider that f (x) = Rn(x) + Tn(x) Therefore,

1. if 0 ≤ Rn(x) ≤ E , then

Tn(x) ≤ f (x) ≤ Tn(x) + E .

2. if E ≤ Rn(x) ≤ 0, then

Tn(x) + E ≤ f (x) ≤ Tn(x).
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Maximum and Minimum
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Continuity and global max/min

First one: Continuous/global min and max

Second one: Continuous/global min and max

Third one: Not continuous/global min/no global max

Forth one: Not continuous/global min/no global max
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If f ′(c) = 0, then c is local max/min?!
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The graph of the function x5/3 − x2/3 for −1 ≤ x ≤ 1
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Outline - Nov. 6, 2019

I Section 2.13: MVT

I Section 3.6: Sketching Graphs
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Rolle’s Theorem
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Rolle’s Theorem

Rolle’s Theorem

Theorem
(CLP 2.13.1–Rolle’s theorem) Let f be a function such that

I f is continuous on [a, b],

I f is differentiable on (a, b),

I f (a) = f (b).

Then there is a point c between a and b so that f ′(c) = 0.
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The Mean Value Theorem (MVT)
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MVT

The Mean Value Theorem

Theorem
(CLP 2.13.4–The mean value theorem) Let f be a function
such that

I f is continuous on [a, b], and

I f is differentiable on (a, b).

Then there is a point c between a and b so that

f ′(c) =
f (b)− f (a)

b − a

or equivalently,

f (b)− f (a) = (b − a)f ′(c).
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Rolle’s Theroem and IVT
Rolle’s Theorem

Theorem
(CLP 2.13.1–Rolle’s theorem) Let f be a function such that

I f is continuous on [a, b],

I f is differentiable on (a, b),

I f (a) = f (b).

Then there is a point c between a and b so that f ′(c) = 0.

Intermediate value theorem(IVT)

Theorem
Let a < b and let f (x) be a function that is continuous at
all points a ≤ x ≤ b. If Y is any number between f (a) and
f (b) then there exists some number c ∈ [a, b] so that
f (c) = Y .
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If f ′(x) = 0 for all x ∈ (a, b), then f (x) is constant on
(a, b)
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f ′(x) > 0 then f is increasing;f ′(x) < 0 then f is
decreasing
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When a critical or singular point of a continuous function
is a local max/min
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Example
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Concave Up and Down
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Outline - Nov. 8, 2019

I Section 3.6: Sketching Graphs
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Different Level of Learning

I Learning Objectives: Be able to show that a differentiable
function has exactly one or two (or more) zeros.

1. Recall and Memorize:
IVT, MVT, and Rolle’s; and how we solve the question

2. Understand:
An Example by Farid

3. Apply:

Examples by You

3. Analyze:

Explain and Analyze Your Work

4. Evaluate:

Other’s solution is Correct?

4.Create:
What questions do you give in the test?
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Second Derivative Test
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Consider the graph of x2 − 5
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Consider the graph of x3 − 3x − 1
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f (x) = x2 is even
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f (x) = x3 is odd
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f (x) = sin(x) is periodic
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Outline - Nov. 13, 2019

I A Quick Review

I Section 3.6: Sketching Graphs
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Theorem
Let f be a continuous function and c be a singular or
critical point. Then

I If f ′ changes from positive to negative at c , then f has
a local max at c .

I If f ′ changes from negative to positive at c , then f has
a local min at c.

I If f ′ does not change sign at c, then c is not a local
max or min.

211 / 266



Theorem

I If f ′′(x) > 0 on I , then it is CU on I .

I If f ′′(x) < 0, then it is CD on I .
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f (x) = x2 is even
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f (x) = x3 is odd
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f (x) = sin(x) is periodic
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Outline - Nov. 15, 2019

I Section 3.6: Sketching Graphs

I Section 3.7: Indeterminate forms and L’Hopital’s rule

lim
x→0

cos(x)− 1

x
=

0

0
=??? or lim

x→+∞

ln(x)

x
=
∞
∞

=???

lim
x→∞

(1 +
3

x
)x = 1∞ =???
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Check-List

• Sketching a graph. A good check-list for sketching a
graph.

I Domain

I Intercepts

I Symmetry

I Asymptotes

I Singular and critical points; Increasing/Decreasing

I Concavity and inflection points
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Different Level of Learning

I Learning Objectives: Be able to do all steps in the check list
and sketch the graph

1. Recall and Memorize:

Check-List

2. Understand:
An Example by Farid

3. Apply:

Examples by You-Knowing what theorem or method you should use

4. Analyze:

Explain and Analyze Your Work

5. Evaluate:

Other’s solution is Correct?

6.Create:
What questions do you give in the test?
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f (x) = x3

1−x2 f ′(x) = x2(3−x2)
(1−x2)2 , and f ′′(x) = 2x(3+x2)

(1−x2)3 .

(−∞,−
√

3)

x = −
√

3

(−
√

3,−1)

x = −1

(−1, 0)

x = 0

(0, 1)

x = 1

(1,
√

3)

x =
√

3

(
√

3,∞)

f ′(x) < 0

f ′(x) = 0

f ′(x) > 0

NE

f ′(x) > 0

f ′(x) = 0

f ′(x) > 0

NE

f ′(x) > 0

f ′(x) = 0

f ′(x) < 0

D

lmin

I

S

I

C

I

S

I

lmax

D

f ′′(x) > 0

f ′′(x) > 0

f ′′(x) > 0

NE

f ′′(x) < 0

f ′′(x) = 0

f ′′(x) > 0

NE

f ′′(x) < 0

f ′′(x) < 0

f ′′(x) < 0

CU

CU

CU

NE

CD

Inflection

CU

NE

CD

CD

CD

Asymptotes: x = 1 and x = −1, lmax: (
√

3,−3
√
3

2 ) and lmin:

(−
√

3, 3
√
3

2 ). Also f (x) is odd.
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f (x) = x3

1−x2
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Indeterminate forms and L’Hôpital’s rule (CLP 3.7)

Theorem
If limx→a f (x) = K and limx→a g(x) = L, then

lim
x→a

f (x)

g(x)
=

K

L
provided L 6= 0.

As an Example:

lim
x→2

x2 − 1

x + 1
=

3

3
= 1.
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But what about this one

lim
x→1

x − 1

x2 − 1
=

0

0
=?????

= lim
x→1

x − 1

(x − 1)(x + 1)

= lim
x→1

1

x + 1
=

1

2
.
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What you can do with

lim
x→0

sin(x)

x
=

0

0
=???

lim
x→0

cos(x)− 1

x
=

0

0
=??? or lim

x→+∞

ln(x)

x
=
∞
∞

=???

Indeterminate,
Guillaume-Francois-Antoine Marquis de L’Hôpital (1661-1704)

• limx→0+ x ln(x)

• limx→∞ x1/x • limx→∞ (1 + 3/x)x

• limx→∞
√

4x2 + 1−
√

x2 − 3x
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Outline - Nov. 18, 2019

I A Quick Review

I Section 3.7: Indeterminate Forms and L’Hôpital’s Rule

By the end of this section you will be able to compute limits
by using L’Hôpital’s rule when it’s needed:
(1) Change the indeterminate forms of types

0× (±∞) 1∞ 00 ∞0 ∞−∞

to indeterminate forms of types

±∞/±∞ 0/0

and then use L’Hôpital’s rule,
(2) when it is better doing algebra than using L’Hôpital’s rule.
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Indeterminate forms

±∞/±∞ and 0/0 are two indeterminate forms. Some other
types are,

0× (±∞) 1∞ 00 ∞0 ∞−∞

If we have any of the above indeterminate forms, it is more
likely that we can change it to a limit that in that limit we
only need to take care of a limit of the form

lim
x→a

f (x)

g(x)
,

and make it an indeterminate form of type ±∞/ ± ∞ and
0/0, and then we can use L’Hôpital’s rule.
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L’ôpital’s rule

(CLP 3.7.2—L’Hôpital’s Rule)

Let f and g be differentiable functions and a either be a real
number or ±∞. Furthermore, suppose that either

I limx→a f (x) = limx→a g(x) = 0, or

I limx→a f (x) = ± limx→a g(x) = ±∞
then

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g ′(x)

provided that limit on the right-hand-side exists or is ±∞.
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Outline - Nov. 20, 2019

I Section 3.5: Optimization

By the end of this section you will be able to translate some
“real world” problems to calculus and then optimizing them
(finding global max/min).
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In general to answer this kind of questions, you need to

I Draw a diagram.

I Variables—assign variables to the quantities in the problem.

I Find some relation between the variables.

I Reduce to a function of 1 variable.

I Find the domain, the possible values that can be assigned to
the variable.

I Max/Min: find the absolute max/min by using methods that
we have studied, for example “closed interval method.”
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Cut-out squares and maximizing the volume
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The cylinder can be inscribed a sphere
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Cross a canal
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Row to C , then run to B
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Outline - Nov. 22, 2019

I Section 3.5: Optimization

By the end of this section you will be able to translate some
“real world” problems to calculus and then optimizing them
(finding global max/min).
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In general to answer this kind of questions, you need to

I Draw a diagram.

I Variables—assign variables to the quantities in the problem.

I Find some relation between the variables.

I Reduce to a function of 1 variable.

I Find the domain, the possible values that can be assigned to
the variable.

I Max/Min: find the absolute max/min by using methods that
we have studied, for example “closed interval method.”
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The cylinder can be inscribed a sphere
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Cross a canal
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Row to C , then run to B
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Outline - Nov. 25, 2019

I Section 4.1: Antiderivative

Learning Objectives

By the end of this section,

I given a derivative dy
dx , you will be able to find what is

the original function y = f (x);

I you will be able to find a function F (x) such that
F ′(x) = f (x) and F (b) = B.

Are you here?
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Pre-assessment

We have F ′(x) = 4x3 + 1 and F (1) = 10. Then

1. F (x) = x4 + x + 10

2. F (x) = 4x4 + x + 5

3. F (x) = x4 + x + 8

4. None of the above.
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Post-assessment

We have F ′(x) = 4x3 + 1 and F (1) = 10. Then

1. F (x) = x4 + x + 10

2. F (x) = 4x4 + x + 5

3. F (x) = x4 + x + 8

4. None of the above.
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Summary

I The antiderivative of a function f (x) is a function F (x)
that F ′(x) = f (x); and

I the most general antiderivative is F (x) + C where C is
an arbitrary constant.
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Pre-assessment

Find F (x) if F ′′(x) = 6x2−18x +14 and F (0) = −8, F (1) =
−5

2 .

1. F (x) = 1
2x4 − 3x3 + 7x2 − 8

2. F (x) = 1
2x4 − 3x3 + 7x2 + x − 8

3. F (x) = 2x4 − 3x3 + 7x2 − 8

4. F (x) = 2x4 − 3x3 + 7x2 + x − 8
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Post-assessment

Find F (x) if F ′′(x) = 6x2−18x +14 and F (0) = −8, F (1) =
−5

2 .

1. F (x) = 1
2x4 − 3x3 + 7x2 − 8

2. F (x) = 1
2x4 − 3x3 + 7x2 + x − 8

3. F (x) = 2x4 − 3x3 + 7x2 − 8

4. F (x) = 2x4 − 3x3 + 7x2 + x − 8
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Outline - Nov. 27, 2019

I Review

Learning Objectives

I Be able to compute the derivative of f (x)g(x).

I Be able to recall the Newton’s law of cooling and use it
to solve some problem.

I Be able to solve some problem regarding related rates.

I Be able to find the nth degree Taylor polynomial of
some differentiable function.

Are you here?
Go to www.menti.com and use the code 67 47 03.
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Announcements

I Your final test contains ... and ... points.

I You will be assigned a seat number.

I The previous final test probably will be sent to you
soon, this test was ... and the median was ... .

I Go to Math Learning Center MLC (Location: LSK
301 and 302) for help
https://www.math.ubc.ca/ MLC/

I My office hours: I will announce them on Friday.
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Example
Go to www.menti.com and use the code 56 72 27

Find
d

dx
x sin(x).

1. d
dx x sin(x) = (ln xcos(x) + sin(x)

x )x sin(x).

2. d
dx xcos(x) = (ln x sin(x) − cos(x)

x )x sin(x).

3. d
dx x sin(x) = (ln x sin(x) + cos(x)

x )x sin(x).

4. d
dx x sin(x) = (ln x sin(x) − cos(x)

x )x sin(x).
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Newton’s Law of Cooling

dT

dt
(t) = K [T (t)− A] .

where T (t) is the temperature of the object at time t, A is
the temperature of its surroundings, and K is a constant of
proportionality. Then

T (t) = [T (0)− A]eKt + A.

Example
Go to www.menti.com and use the code 70 06 2.

The temperature of a glass of iced tea is initially 5◦. After 5
minutes, the tea has heated to 10◦ in a room where the air
temperature is 30◦.
What is the temperature after 10 minutes?
1. 11 2. 12 3. 13 4. 14
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Related Rates
Go to www.menti.com and use the code 55 99 26.

A ball is dropped from a height of 49m above level ground.
The height of the ball at time t is h(t) = 49 − 4.9t2m. A
light, which is also 49m above the ground, is 10m to the
left of the ball’s original position. As the ball descends, the
shadow of the ball caused by the light moves across the
ground. How fast is the shadow moving one second after
the ball is dropped?

1. -100 2. -200 3. 100 4. 200
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Taylor Polynomial

Let a be a constant and let n be a non-negative integer. The
nth degree Taylor polynomial for f (x) about x = a is

Tn(x) = f (a) + f ′(a)(x − a) +
1

2!
f ′′(a)(x − a)2+

1

3!
f (3)(a)(x − a)3 + · · ·+ 1

n!
f (n)(a)(x − a)n

Tn(x) =
n∑

k=0

1

k!
f (k)(a)(x − a)k

The special case a = 0 is called a Maclaurin polynomial.
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Maclaurin polynomial for sin(x)
Go to www.menti.com and use the code 33 24 27.

Example. Find the 5th degree Maclaurin polynomial for
sin(x).

1. T5(x) = x − x3

3! + x5

5!

2. T5(x) = x + x3

3! −
x5

5!

3. T5(x) = x + x3

3 −
x5

5

4. T5(x) = 1 + x2

2! −
x4

4!
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Lagrange remainder theorem: The error when approxi-
mating function is Tn(x)

Rn(x) = f (x)− Tn(x) =
1

(n + 1)!
f (n+1)(c)(x − a)n+1

for some c strictly between a and x

Estimate ln(2)
Go to www.menti.com and use the code 95 98 78.

We use the third Taylor polynomial for ln(x) about x = 1 to
estimate ln(2). Then which of the following is more accurate.
1. |R3(2)| ≤ 1 2. |R3(2)| ≤ 1

2
3. |R3(2)| ≤ 1

4 . 4. |R3(2)| = 0
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Outline - Nov. 29, 2019

I Review

Learning Objectives

I Be able to find the nth degree Taylor polynomial of
some differentiable function and use the Lagrange
Remainder Theorem.

I Be able to recall how to sketch a graph and use it to
sketch the graph of a function.

Are you here?
Go to www.menti.com and use the code 81 18 50.

My office hours: Monday (Date: Dec 9, Time: 9-11 am),
Tuesday, Wednesday (Dec 10-Dec 11) from 1:30 pm to 3:30 pm;
location LSK 300.
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Taylor Polynomial

Let a be a constant and let n be a non-negative integer. The
nth degree Taylor polynomial for f (x) about x = a is

Tn(x) = f (a) + f ′(a)(x − a) +
1

2!
f ′′(a)(x − a)2+

1

3!
f (3)(a)(x − a)3 + · · ·+ 1

n!
f (n)(a)(x − a)n

Tn(x) =
n∑

k=0

1

k!
f (k)(a)(x − a)k

The special case a = 0 is called a Maclaurin polynomial.
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Third Taylor polynomial of ln(x)
Go to www.menti.com and use the code 79 29 42.

Which of the following is the third Taylor polynomial of ln x
about x = 1.

1. 1 + (x − 1)− 1
2(x − 1)2 + 2

3!(x − 1)3

2. 1 + (x − 1)− 1
2(x − 1)2 − 2

3!(x − 1)3

3. (x − 1)− 1
2(x − 1)2 + 2

3!(x − 1)3

4. (x − 1)− 1
2(x − 1)2 − 2

3!(x − 1)3
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Domain
Go to www.menti.com and use the code 91 54 15.

The domain of f (x) = x(3− x)1/3 is

1. x ≤ 3 2. x ≥ 3 3. 0 ≤ x ≤ 3 4. R.
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limits
Go to www.menti.com and use the code 82 43 34.

Let f (x) = x(3 − x)1/3. Then limx→∞ f (x) = ..... and
limx→∞ f (x) = ......

1. −∞,−∞
2. ∞,−∞
3. −∞,∞
4. ∞,∞
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Derivative of f (x)
Go to www.menti.com and use the code 46 35 93.

Let f (x) = x(3− x)1/3. Then

1. d
dx f (x) = − 4x−9

3(3−x)2/3 .

2. d
dx f (x) = 4x−9

3(3−x)2/3 .

3. d
dx f (x) = (x − 3)1/3 − 1

3(3−x)2/3 .

4. d
dx f (x) = (x − 3)1/3 + 1

3(3−x)2/3 .
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Singular/Critical
Go to www.menti.com and use the code 31 06 69.

Let f (x) = x(3− x)1/3. Then

1. f (x) has a singular point at x = 2.25 and a critical
point at x = 3.

2. f (x) has singular points at x = 2.25 and x = 3.

3. f (x) has a singular point at x = 3 and a critical point
at x = 2.25.

4. f (x) has critical points at x = 2.25 and x = 3.
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Global max/min
Go to www.menti.com and use the code 23 54 74.

Let f (x) = x(3− x)1/3. Find the global max/min (if any) of
f (x) on the interval [0, 4]

1. f (x) has a global max at x = 2.25 and has a global
min at x = 4.

2. f (x) has a global max at x = 4 and has a global min at
x = 2.25.

3. f (x) has a global max at x = 2.25 and has no global
min.

4. f (x) has no global max and has a global min at x = 4.
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Increasing/Decreasing
Go to www.menti.com and use the code 69 26 12.

Let f (x) = x(3 − x)1/3. Find where the function f (x) is
increasing and where it is decreasing.

1. f (x) is increasing on (−∞, 2.25) ∪ (3,∞), and it is
decreasing on (2.25, 3).

2. f (x) is decreasing on (−∞, 2.25) ∪ (3,∞), and it is
increasing on (2.25, 3).

3. f (x) is decreasing on (−∞, 2.25), and it is increasing
on (2.25,∞).

4. f (x) is increasing on (−∞, 2.25), and it is decreasing
on (2.25,∞).
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Local max/min
Go to www.menti.com and use the code 45 33 1.

Let f (x) = x(3 − x)1/3. Find the local max/min (if any) of
f (x).

1. f (x) has a local min at x = 2.25 and has a local max
at x = 3.

2. f (x) has a local max at x = 2.25 and has a local min
at x = 3.

3. f (x) has a local max at x = 2.25 and has no local min.

4. f (x) has a local min at x = 3 and has no local max.
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Second derivative
Go to www.menti.com and use the code 86 82 43.

Let f (x) = x(3− x)1/3. Find the second derivative of f (x).

1. f ′′(x) = −4x−18
9(3−x)5/3

2. f ′′(x) = 4x+18
9(3−x)5/3

3. f ′′(x) = −4x+18
9(3−x)5/3

4. f ′′(x) = 4x−18
9(3−x)5/3
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Concavity
Go to www.menti.com and use the code 31 91 1.

Let f (x) = x(3−x)1/3. Where f (x) is concave up and where
it is concave down.

1. Concave down on (−∞, 4.5) and concave up (4.5,∞).

2. Concave down on (−∞, 3) and concave up (3,∞).

3. Concave down on (−∞, 3) ∪ (4.5,∞) and concave up
(3, 4.5).

4. Concave up on (−∞, 3) ∪ (4.5,∞) and concave down
on (3, 4.5).
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Inflection points
Go to www.menti.com and use the code 66 59 14.

Let f (x) = x(3− x)1/3. Find the inflection point(s) of f (x).

1. The function has only one inflection point at x = 3.

2. The function has only one inflection point at x = 4.5.

3. The function has inflection points at x = 3 and x = 4.5

4. The function has no inflection points.
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Go to www.menti.com and use the code 45 59 80.

Say your last words . . .
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