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Chapter 1

Limits

What does this mean

lim
x→a

f(x) = L?

The ”limit” appears when we want to

• find the tangent to a curve; or

• find the velocity of an object.

1.1 Tangent line
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6 CHAPTER 1. LIMITS

The tangent line to a curve y = f(x) at a point P (if exists) is a line L that there is
a neighborhood for P such that in that neighborhood the line L touches (does not cross)
the curve y = f(x) only at P (and not other points in that neighborhood).

The equation of a line

– The formula for a line that passes though (x1, y1) with slope m is

y = y1 +m(x− x1).

– Given two points (x1, y1) and (x2, y2) on a line, then the slope of the line is

m =
y2 − y1
x2 − x1

,

and the formula for the line then is

y = y1 +m(x− x1).

Example 1.1.1. Find the equation of the line with slope −3 that passes through (1, 2).

Solution. The equation of the line is

y = 2 + (−3)(x− 1), so y = 5− 3x.

Example 1.1.2. Find the equation of the line that passes through (1, 2) and (2,−1).

Solution. First we find the slope which is

−1− 2

2− 1
= −3.

Then the equation of the line is

y = 2 + (−3)(x− 1), so y = 5− 3x.

The equation of a tangent line: Given a curve y = f(x) and a point P on the curve,
how to find the slope of the tangent to a curve at P : let do this through an example.

Example 1.1.3. Find the tangent line to the curve y = x2 that passes through P = (1, 1).
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So we want to find the slope the line that passes through the points (x1, y1) = (1, 1)
and (x2, y2) = (1 + h, (1 + h)2). The slope then is

m =
y2 − y1
x2 − x1

=
(1 + h)2 − 12

(1 + h)− 1
=

1 + 2h+ h2 − 1

h
=
h(h+ 2)

h
= 2 + h

h m = (1+h)2−12
(1+h)−1

0.1 2.1
0.01 2.01
0.001 2.001

When h gets smaller and smaller, the slope will be closer and closer to the slope of the
tangent line to y = x2 at (1, 1), which the slope will be closer and closer to 2, we can
write this more mathematically as

lim
h→0

(1 + h)2 − 1

(1 + h)− 1
= 2

Read: the limit of (1+h)2−1
(1+h)−1 as h approaches 0 is 2.

Tangent line is

y = 1 + 2(x− 1) = 2x− 1.
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1.2 Velocity

– Let t be elapsed time measured in sec-
ond

– S(t) be the distance the ball has fallen
in meters

– What is S(0)? S(0) = 0.

– (Galileo) S(t) = 4.9t2.

Question: How fast the ball is fallen after 1 second, that is, find v(1), the velocity
at t = 1 ?

average velocity =
difference in position

difference in time
=
S(t2)− S(t1)

t2 − t1
.

To answer the question we should find the average velocity of the falling ball between
(1 + h) and 1. So,

average velocity when (t2 = 1 + h) and (t1 = 1)

=
S(1 + h)− S(1)

h
=

4.9(1 + h)2 − 4.9

h
= 4.9(2 + h).
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time window average velocity

1 ≤ t ≤ 1.1 10.29
1 ≤ t ≤ 1.01 9.84
1 ≤ t ≤ 1.01 9.8049
1 ≤ t ≤ 1.001 9.80049

So we can write

v(1) = lim
h→0

S(1 + h)− S(1)

h
= 9.8.

More generally:

We define the instantaneous velocity at time t = a to be the limit

v(a) = lim
h→0

S(a+ h)− S(a)

h
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1.3 The limit of a function

To arrive at the definition of limit, we start with a very simple example.

Example 1.3.1. Consider the following function

f(x) =


2x x < 3

9 x = 3

2x x > 3

If we plug in some numbers very close to 3 (but not exactly 3) into the function we see

So as x moves closer and closer to 3, without being exactly 3, we see that the function
moves closer and closer to 6. We can then write this as

lim
x→3

f(x) = 6.

Definition. (Informal definition of limit) We write

lim
x→a

f(x) = L.

if the value of the function f(x) is sure to be arbitrary close to L whenever the value
of x is close enough to a, without being exactly a.

Example 1.3.2. Let f(x) = x−2
x2+x−6 and find its limit as x→ 2.

Solution. We want to find

lim
x→2

x− 2

x2 + x− 6
.

Important point: if we we compute f(2), then we have 0
0

which is undefined.
Again we plug in numbers close to 2 and we have

So

lim
x→2

x− 2

x2 + x− 6
= 2.
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Example 1.3.3. Consider the following function f(x) = sin(π/x). Find the limit as
x→ 0 of f(x).

Solution. When x is getting closer and closer to 0, it oscillates faster and faster. Since
the function does not approach a single number as we bring x closer and closer to zero,
the limit does not exist. Thus,

lim
x→0

sin(π/x) = DNE

Example 1.3.4. Consider the function

f(x) =


x x < 2

−1 x = 2

x+ 3 x > 2

Find
lim
x→2

f(x).

Solution.

Let again plug in some numbers close to 2 (but not exactly 2)



12 CHAPTER 1. LIMITS

Now when we approach from below (or left), we seem to be getting closer to 2 ( lim
x→2−

f(x) =

2), but when we approach from above (or right) we seem to be getting closer to 5
( lim
x→2+

f(x) = 5) . Since we are not approaching the same number the limit does not

exists.

lim
x→2

f(x) = DNE

Definition. (Informal definition of one-sided limits) We write

lim
x→a−

f(x) = K

when the value of f(x) gets closer and closer to K when x < a and x moves closer
and closer to a. Since the x-values are always less than a, we say that x approaches
a from below (or left). This is also often called the left-hand limit since the x-values
lie to the left of a on a sketch of the graph.

We similarly write
lim
x→a+

f(x) = L

when the values of f(x) gets closer and closer to L when x > a and x moves closer
and closer to a. For similar reason we say that x approaches a from above, and
sometimes to this as the the right-hand limit.

Theorem 1.3.5.

lim
x→a

f(x) = L if and only if lim
x→a−

f(x) = L and lim
x→a+

f(x) = L

• If the limit of f(x) as x approaches a exists and is equal to L, then both the
left-hand and right-hand limits exist and are equal to L.

• If the left-hand and right-hand limits as x approaches a exist and are equal, then
the limit as x approaches a exists and is equal to the one-sided limits.

Contrapositive of the above argument says

• If either of the left-hand and right-hand limits as x approaches a fail to exist, or if
they both exist but are different, then the limit as x approaches a does not exist.
AND,

• If the limit as x approaches a does not exist, then the left-hand and right-hand
limits are either different or at least one of them does not exist.
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Example 1.3.6. Consider the graph of the function f(x).

Then
lim
x→1−

f(x) = 2 lim
x→1+

f(x) = 2 lim
x→1

f(x) = 2

Example 1.3.7. Consider the graph of the function g(x).

Then
lim
t→1−

g(t) = 2 lim
t→1+

g(t) = −2 lim
t→1

g(t) = DNE

In the following example even though the limit doesn’t exists when x approaches a,
we can say more.

Example 1.3.8. Consider the graph for the function f(x).
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lim
x→a

f(x) = +∞

Example 1.3.9. Consider the graph for the function g(x).

lim
x→a

g(x) = −∞

Definition. We write
lim
x→a

f(x) = +∞

when the value of the function f(x) becomes arbitrarily large and positive as x gets
closer and closer to a, without being exactly a.
Similarly, we write

lim
x→a

f(x) = −∞

when the value of the function f(x) becomes arbitrarily large and negative as x gets
closer and closer to a, without being exactly a.

Example 1.3.10.

lim
x→0

1

x2
= +∞ lim

x→0
− 1

x2
= −∞

Important Point: Do not think of “+∞” and “−∞” in these statements as numbers.
When we write lim

x→a
f(x) = +∞, it says “the function f(x) becomes arbitrary large as x

approaches a”.
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Example 1.3.11. Consider the graph for the function h(x).

lim
x→a−

h(x) = +∞ lim
x→a+

h(x) = 3 lim
x→a

h(x) = DNE

Example 1.3.12. Consider the graph for the function s(x).

lim
x→a−

s(x) = 3 lim
x→a+

s(x) = −∞ lim
x→a

s(x) = DNE

Definition. We write
lim
x→a+

f(x) = +∞

when the value of the function f(x) becomes arbitrarily large and positive as x gets
closer and closer to a from above (equivalently, from right), without being exactly a.
Similarly, we write

lim
x→a+

f(x) = −∞

when the values of the function f(x) becomes arbitrarily large and negative as x gets
closer and closer to a from above (equivalently, from right), without being exactly a.
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The notation
lim
x→a−

f(x) = +∞ and lim
x→a−

f(x) = −∞

has a similar meaning except that limits are approached form below (from left).

Example 1.3.13. Consider the function

g(x) =
1

sin(x)
.

Find the one-side limits of this function as x→ π.
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1.4 Calculating Limits with Limit Laws

Theorem 1.4.1. Let a, c ∈ R. The following two limits hold

lim
x→a

c = c lim
x→a

x = a

Theorem 1.4.2. (Arithmetic of Limits) Let a, c ∈ R, let f(x) and g(x) be defined
for all x’s that lie in some interval about a (but f and g need not to be defined
exactly at a).

lim
x→a

f(x) = F lim
x→a

g(x) = G

exists with F,G ∈ R. Then the following limits hold

• lim
x→a

(f(x) + g(x)) = F +G–limit of the sum is the sum of the limits.

• lim
x→a

(f(x)−g(x)) = F−G–limit of the difference is the difference of the limits.

• lim
x→a

cf(x) = cF .

• lim
x→a

(f(x).g(x)) = F.G–limit of the product is the product of the limits.

• If G 6= 0 then lim
x→a

f(x)
g(x)

= F
G

.

Example 1.4.3. Given

lim
x→1

f(x) = 3 and lim
x→1

g(x) = 2

We have
lim
x→1

3f(x) = 3× lim
x→1

f(x) = 3× 3 = 9.

lim
x→1

3f(x)− g(x) = 3× lim
x→1

f(x)− lim
x→1

g(x) = 3× 3− 2 = 7.

lim
x→1

f(x)g(x) = lim
x→1

f(x). lim
x→1

g(x) = 3× 2 = 6.

lim
x→1

f(x)

f(x)− g(x)
=

limx→1 f(x)

limx→1 f(x)− limx→1 g(x)
=

3

3− 2
= 3.

Example 1.4.4.
lim
x→3

4x2 − 1 = 4× lim
x→3

x2 − lim
x→3

1 = 35.

lim
x→2

x

x− 1
=

limx→2 x

limx→2 x− limx→1 1
=

2

2− 1
= 2.

Consider that we apply the theorem Arithmetic of Limits to compute the limit of
a ratio if the limit of denominator is not zero. What will happen if the limit of
denominator is zero:

– the limit does not exist, eg.

lim
x→0

x

x2
= lim

x→0

1

x
= DNE
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– the limit is ±∞, eg.

lim
x→0

x2

x4
= lim

x→0

1

x2
= +∞ or lim

x→0

−x2

x4
= lim

x→0

−1

x2
= −∞.

– the limit is 0, eg.

lim
x→0

x2

x
= lim

x→0
x = 0.

– the limit exists and it nonzero, eg.

lim
x→0

x

x
= 1.

Theorem 1.4.5. Let n be a positive integer, let a ∈ R and let f be a function so
that

lim
x→a

f(x) = F

for some real number F . Then the following holds

lim
x→a

(f(x))n =
(

lim
x→a

f(x)
)n

= F n

so that the limit of a power is the power of the limit. Similarly, if

• n is an even number and F > 0, or

• n is an odd number and F is any real number

then

lim
x→a

(f(x))1/n =
(

lim
x→a

f(x)
)1/n

= F 1/n.

Example 1.4.6.

lim
x→4

x1/2 = 41/2 = 2.

lim
x→4

(−x)1/2 = −41/2 = not a real number.

lim
x→2

(4x2 − 3)1/3 = (4(2)2 − 3)1/3 = 131/3

Example 1.4.7. Compute the following limits.

1. limx→2
x3−x2
x−1

2. limx→1
x3−x2
x−1

Solution. 1. limx→2
x3−x2
x−1 = 4.

2. Consider that limx→1 x
3 − x2 = 0 and limx→1 x− 1 = 0. However,

x3 − x2

x− 1
=
x2(x− 1)

x− 1
,
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thus
x3 − x2

x− 1
=

{
x2 x 6= 1

undefined x = 1.

And so

lim
x→1

x3 − x2

x− 1
= lim

x→1
x2 = 1.

The reasoning in the above example can be made more general:

Theorem 1.4.8. If f(x) = g(x) except when x = a then

lim
x→a

f(x) = lim
x→a

g(x)

provided the limit of g exists.

We mostly use the above theorem when we end up with 0
0
.

Example 1.4.9. Compute

lim
h→0

(1 + h)2 − 1

h
.

Solution. Note that

(1 + h)2 − 1

h
=

1 + 2h+ h2 − 1

h
=
h(2 + h)

h
.

Thus,

(1 + h)2 − 1

h
=

{
2 + h h 6= 0

undefined h = 0.

And so

lim
h→0

(1 + h)2 − 1

h
= lim

h→0
2 + h = 2.

We now present a slightly harder example.

Example 1.4.10. Compute the limit

lim
x→0

x√
1 + x− 1

.
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Solution. Both the limits of the numerator and denominator as x → 0 are 0, so we
cannot use the Theorem Arithmetic of limits. We now can simply multiply the numerator
and denominator by the conjugation of

√
1 + x− 1, that is,

√
1 + x+ 1. We have

Before we move to the next section and study the limits at infinity, we have one more
theorem to state.

Example 1.4.11. Compute

lim
x→0

x2 sin(
π

x
)

Solution. It is not possible to simply use the theorem Arithmetic of Limits since the limit
of sin(π

x
) as x→ 0 does not exist. Since −1 ≤ sin(θ) ≤ 1 for all real numbers θ, we have

−1 ≤ sin(
π

x
) ≤ 1 for all x 6= 0
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Multiplying the above by x2 we see that

−x2 ≤ x2 sin(
π

x
) ≤ x2 for all x 6= 0.

Since
lim
x→0

x2 = lim
x→0

(−x2) = 0

by the sandwich (or squeeze or pinch) theorem (look at below for the sandwich
theorem) we have

lim
x→0

x2 sin(
π

x
) = 0.

Theorem 1.4.12. (sandwich (or squeeze or pinch) theorem ) Let a ∈ R and let
f, g, h be three functions so that

f(x) ≤ g(x) ≤ h(x)

for all x in an interval around a, except possibly at x = a. Then if

lim
x→a

f(x) = lim
x→a

h(x) = L

then it is also the case that
lim
x→a

g(x) = L.

Example 1.4.13. Let f(x) be a function such that 1 ≤ f(x) ≤ x2 − 2x+ 2. What is

lim
x→1

f(x)?

Solution. Consider that

lim
x→1

x = 1 and lim
x→1

x2 − 2x+ 2 = 1.

Therefore, by the sandwich/pinch/squeeze theorem

lim
x→1

f(x) = 1.

1.5 Limits at Infinity

Example 1.5.1. We want to compute

lim
x→+∞

1

x
and lim

x→−∞

1

x

By plug in some large numbers into 1
x

we have

−10000 −1000 −100|| ◦ ||100 1000 10000
−0.0001 0.001 −0.01|| ◦ ||0.01 0.001 0.0001

We see that as x is getting bigger and positive the function 1
x

is getting closer to 0. Thus,

lim
x→+∞

1

x
= 0.

Moreover,

lim
x→−∞

1

x
= 0.
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Definition. (Informal limit at infinity.) We write

lim
x→∞

f(x) = L

when the value of the function f(x) gets closer and closer to L as we make x larger and
larger and positive.
Similarly, we write

lim
x→−∞

f(x) = L

when the value of the function f(x) gets closer and closer to L as we make x larger and
larger and negative.

Example 1.5.2. Consider the graph of the function f(x).

Then

lim
x→∞

f(x) = −2 and lim
x→−∞

f(x) = 2

Example 1.5.3. Consider the graph of the function g(x).

Then

lim
x→∞

g(x) = −2 and lim
x→−∞

g(x) = +∞
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Same as usual we start with two very simple building blocks and build other limits
from them.

Theorem 1.5.4. Let c ∈ R then the following limits hold

lim
x→+∞

c = c lim
x→−∞

c = c

lim
x→+∞

1

x
= 0 lim

x→−∞

1

x
= 0.

Theorem 1.5.5. Let f(x) and g(x) be two functions for which the limits

lim
x→∞

f(x) = F lim
x→∞

= G

exist. Then the following limits hold

lim
x→∞

(f(x) + g(x)) = F ±G

lim
x→∞

f(x)g(x) = FG

lim
x→∞

f(x)

g(x)
=
F

G
provided G 6= 0

and for rational numbers r,
lim
x→∞

(f(x))r = F r

provided that f(x)r is defined for all x.
The analogous results hold for limits to −∞.

We need a little extra care with the posers of functions.
Warning: Consider that

lim
x→+∞

1

x1/2
= 0

However,

lim
x→+∞

1

(−x)1/2

does not exist because x1/2 is not defined for x < 0.

Example 1.5.6. Compute the following limit:

lim
x→∞

x2 − 3x+ 4

3x2 + 8x+ 1

Solution. By factoring x with largest exponent in the numerator and denominator we
have

lim
x→∞

x2 − 3x+ 4

3x2 + 8x+ 1
= lim

x→∞

x2(1 + −3x
x2

+ 4
x2

)

x2(3 + 8x
3x2

+ 1
3x2

)
= lim

x→∞

(1 + −3x
x2

+ 4
x2

)

(3 + 8x
3x2

+ 1
3x2

)
=

(limx→∞ 1 + limx→∞
−3x
x2

+ limx→∞
4
x2

)

(limx→∞ 3 + limx→∞
8x
3x2

+ limx→∞
1

3x2
)

=
1

3
.
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Remark. Note that
√
x2 = |x| =

{
x x ≥ 0

−x x < 0.

Example 1.5.7. Compute the following limit:

lim
x→∞

√
4x2 + 1

5x− 1
.

Solution. Factor the terms with the largest exponents in the numerator and denominator.
We have

lim
x→∞

√
4x2 + 1

5x− 1
= lim

x→∞

√
4x2(1 + 1

4x2
)

5x(1− 1
5x

)
= lim

x→∞

√
4x2
√

(1 + 1
4x2

)

5x(1− 1
5x

)
= lim

x→∞

2|x|
5x

= lim
x→∞

2x

5x
=

2

5
.

Example 1.5.8. Compute the following limit:

lim
x→−∞

√
4x2 + 1

5x− 1
.

Solution. By the same kind of computation we have

lim
x→−∞

√
4x2 + 1

5x− 1
= lim

x→∞

2|x|
5x

.

Consider that since x is getting negative values, we have |x| = −x. Therefore,

lim
x→−∞

√
4x2 + 1

5x− 1
= lim

x→∞

2|x|
5x

= lim
x→∞

−2x

5x
=
−2

5
.

Example 1.5.9. Compute the following limit:

lim
x→∞

(
x7/5 − x

)
.
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Solution. We factor the term with the largest exponent, we have

lim
x→∞

(
x7/5 − x

)
= lim

x→∞
x7/5

(
1− 1

x2/5

)
=∞.

Theorem 1.5.10. Let a, c,H ∈ R and let f, g, h be functions defined in an interval
around a (but they need not be defined at x = a), so that

lim
x→a

f(x) = +∞ lim
x→a

g(x) = +∞ lim
x→a

h(x) = H

1.

lim
x→a

(f(x) + g(x)) = +∞.

2.

lim
x→a

(f(x) + h(x)) = +∞.

3.

lim
x→a

(f(x)− g(x)) = undetermined.

4.

lim
x→a

(f(x)− h(x)) = +∞.

5.

lim
x→a

cf(x) =


+∞ c > 0

0 c = 0

−∞ c < 0

6.

lim(f(x).g(x)) = +∞.

7.

lim
x→a

(f(x).h(x)) =


+∞ H > 0

undetermined H = 0

−∞ H < 0

8.

lim
x→a

h(x)

f(x)
= 0.
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Example 1.5.11. Consider the following three functions:

f(x) = x−2 g(x) = 2x−2 h(x) = x−2 − 1.

Then
lim
x→0

f(x) = +∞ lim
x→0

g(x) = +∞ lim
x→0

h(x) = +∞.

Then

•
lim
x→0

(f(x)− g(x)) = lim
x→0

x−2 = −∞

•
lim
x→0

(f(x)− h(x)) = lim
x→0

(1) = 1

•
lim
x→0

(g(x)− h(x)) = lim
x→0

x−2 + 1 =∞
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1.6 Continuity

Look at all the following functions.

All of these functions are continuous. Roughly speaking, a function is continuous if it
does not have any abrupt jumps. Now consider the following function.

These functions are not continuous. The function f , g, and h have abrupt jumps at
x = 2, x = 0, and x = 1, respectively, so f is not continuous at a, g is not continuous at
0, and h is not continuous at 1.

Definition. A function f(x) is continuous at a if

lim
x→a

f(x) = f(a).

If a function is not continuous at a then it is said to be discontinuous at a. When
we write that f is continuous without specifying a point, then typically this means
that f is continuous at a for all a ∈ R.. When we write that f(x) is continuous on
the open interval (a, b) then the function is continuous at every point c satisfying
a < c < b.

From the above definition we immediately have that if f is continuous at a, then

1. f(a) exists;

2. limx→a− exists and is equal to f(a).
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3. limx→a+ exists and is equal to f(a).

Definition. A function is continuous from the left at a if

lim
x→a−

= f(a).

And a function is continuous from the right at a if

lim
x→a−

= f(a).

Definition. A function f(x) is continuous on an interval [a, b] if

1. f(x) continuous on (a, b),

2. f(x) is continuous form the right at a,

3. f(x) is continuous form the left at b.

Definition. A function f(x) is continuous on an interval (a, b] (on the interval
[a, b)) if

1. f(x) continuous on (a, b),

2. f(x) is continuous form the left at b (from the right at a).



1.6. CONTINUITY 29

Example 1.6.1. Consider the function

f(x) =

{
x x < 1

x+ 2 x ≥ 1

jump discontinuity

•
lim
x→1−

f(x) = 1 lim
x→1+

f(x) = 3 f(1) = 3.

• The function f(x), at x = 1 is not continuous because the limit does not exist;
however, it is continuous form the right at 1 since

lim
x→1+

f(x) = 3 = f(1).

• The function f(x), on [1,∞) (for x ≥ 1) is continuous.

• The function f(x), on (−∞,−1) is continuous.
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Example 1.6.2. Consider the function

g(x) =

{
1
x2

x 6= 0

0 x = 0

infinite discontinuity

• Consider that

lim
x→0−

g(x) =∞ = lim
x→0+

g(x) g(0) = 0.

Thus the function g(x) is not continuous at 0 because

lim
x→0

g(x) =∞ 6= 0 = g(0).

It is not continuous at 0 from the left since limx→0− g(x) = ∞ 6= 0 = g(0)
and not from the right since limx→0+ g(x) =∞ 6= 0 = g(0).

• the function g(x) is continuous at all points in R except 0.
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Example 1.6.3. Consider the function

h(x) =

{
x3−x2
x−1 x 6= 1

0 x = 1

removable discontinuity

•
lim
x→1−

h(x) = 1 = lim
x→1+

h(x) f(1) = 0.

•
lim
x→1

= 1.

• the function h(x) is not continuous at 1 since

lim
x→1

h(x) = 1 6= 0 = h(1).

It is not continuous form the left since

lim
x→1−

h(x) = 1 6= 0 = h(1)

and not from the right since

lim
x→1+

h(x) = 1 6= 0 = h(1).

• the function h(x) is continuous at all points in R except 1.

Lemma 1.6.4. Let c ∈ R. The functions

f(x) = x g(x) = c

are continuous everywhere on the real line.
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Theorem 1.6.5. (Arithmetic of continuity) Let a, c ∈ R and let f(x) and
g(x) be functions that are continuous at a. Then the following functions are also
continuous at x = a.

• f(x) + g(x) and f(x)− g(x),

• cf(x) and f(x)g(x), and

• f(x)
g(x)

provided g(a) 6= 0.

Theorem 1.6.6. The following functions are continuous everywhere in their do-
mains

• polynomials and rational functions (for example f(x) = x5 + 4x2 + 1 and
g(x) = x2+1

x+1
)

• roots and powers (for example h(x) =
√
x and r(x) = 2x)

• trig functions and their inverses (for example k(x) = sin(x) and t(x) =
cos−1(x))

• exponentials and logarithms (for example s(x) = ex and q(x) = lnx).

Example 1.6.7. Determine when the function f(x) = sin(x)
x2−5x+6

is continuous?
Since both sin(x) and x2 − 5x + 6 are continuous by the above theorem we only
need to check when x2 − 5x+ 6 = 0. Note that x2 − 5x+ 6 = (x− 2)(x− 3), thus
this polynomial is only zero at x = 2 and x = 3. Therefore, f(x) is continuous at
all points in R except 2 and 3.

Theorem 1.6.8. If g is continuous at a and f(x) is continuous at g(a), then
(f ◦ g)(x) = f(g(x)) is continuous at x = a.
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Example 1.6.9. Determine when the function h(x) =
√

sin(x) is continuous.

Solution. Let f(x) =
√
x and g(x) = sin(x), then h(x) = (f ◦g)(x). We only need

to find out at what points sin(x) is positive.

The function
√

sin(x) is continuous if

x ∈ [2nπ, (2n+ 1)π] for all natural numbers n.

Theorem 1.6.10. (Intermediate value theorem(IVT)) Let a < b and let f(x)
be a function that is continuous at all points a ≤ x ≤ b. If Y is any number between
f(a) and f(b) then there exists some number c ∈ [a, b] so that f(c) = Y .

Remark. One of the main application of the IVT theorem is showing a function f has
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a zero inside an interval. For example, in the following picture

we can see that f(a) < 0 and f(b) > 0, therefore by IVT, there is a number c between a
and b such that f(c) = 0.

Remark. If f is continuous and f(a) ≤ Y ≤ f(b), the IVT merely shows that there is a
a ≤ c ≤ b such that f(c) = Y , but it doesn’t show how many of them exist. For example,
in the following picture, we can see f(a) ≤ Y ≤ f(b), and there are three numbers c1, c2,
and c3 such that f(c1) = f(c2) = f(c3) = Y .

Remark. Consider that if the function f is not continuous at the interval [a, b] then the
IVT fails. In the following examples, even though f(a) ≤ Y ≤ f(b), there is not a number
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a ≤ c ≤ b such that f(c) = Y .

Example 1.6.11. Show that the function f(x) = x− 1 + sin(πx/2) has a zero in
0 ≤ x ≤ 1.

Solution. Consider that f(x) is a continuous function such that f(0) = −1 and
f(1) = 1. Therefore, by IVT, since f(0) = −1 ≤ 0 ≤ 1 = f(1), we have f(c) = 0
for some c ∈ [0, 1].

Example 1.6.12. Use the bisection method to find a zero of f(x) = x − 1 + sin(πx/2)
that lies between 0 and 1.

Solution. • Let a = 0 and b = 1. Then

f(0) = −1

f(1) = 1

• Test the point in the middle x = 1+0
2

= 0.5,

f(0.5) = 0.2071067813 > 0

• Let a = 0 and b = 0.5. Then
f(0) = −1

f(1) = 0.2071067813

So by IVT, there is a zero in [0, 0.5].

• Test the point in the middle x = 0.5+0
2

= 0.25.

f(0.25) = −0.3673165675 < 0.

• Let a = 0.25, b = 0.5 where f(0.25) < 0 and f(0.5) > 0. By IVT there is a zero in
the interval [0.25, 0.5].

• So without much work we know the location of a zero inside a range of length 1/4.
Each iteration will halve the length of the range and we keep going until we reach
the precision we need, though it is much easier to program a computer to do it.
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Chapter 2

Derivatives

2.1 Revisiting Tangent Lines

Example 2.1.1. Find the slope of the tangent line to the curve y = x2 that passes
through P = (1, 1).

Solution. Consider that the slope of the secant line is

f(1 + h)− f(1)

(1 + h)− 1
=
f(1 + h)− f(1)

h
.

And the slope of the tangent line is the same as

lim
h→0

f(1 + h)− f(1)

h
.

Theorem 2.1.2. Given a function f(x) the slope of the tangent line at x = a (if
exists) is

lim
x→a

f(a+ h)− f(a)

h
.

37
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2.2 Definition of the derivative

Definition. (Derivative at a point) Let a ∈ R and let f(x) be a function defined
on an open interval that contains a.

• The derivative of f(x) at x = a is denoted f ′(a) and is defined by

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
(2.2.1)

if the limit exists.

• When the above limit exists, the function f(x) is said to be differentiable at
x = a. When the limit does not exist, the function f(x) is said to be not
differentiable at x = a.

• We can equivalently define the derivative f ′(a) by the limit

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

To see that these two definitions are the same, we set x = a + h(x − a = h) and
then when h approaches 0, we have x approaches a, and the limit in 2.2.1 becomes
limx→a

f(x)−f(a)
x−a .

Example 2.2.1. Let a, c ∈ R be constants. Compute the derivative of the function
f(x) = c at x = a.

Solution. By the definition of the derivative, we have

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

c− c
h

= lim
h→0

0

= 0
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Example 2.2.2. Let a ∈ R. Compute the limit of the function g(x) = x at x = a.

Solution. By the definition of the derivative we have

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

(a+ h)− a
h

= lim
h→0

h

h
= lim

h→0
1

= 1.

We have so proved our first theorem which is the following.

Theorem 2.2.3. (easiest derivative) Let a, c ∈ R and let f(x) = c and g(x) = x.
Then

f ′(a) = 0

and
g′(a) = 1.

Example 2.2.4. Compute the derivative of f(t) = t2 at t = a.

Solution. We have that

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

(a+ h)2 − a2

h

= lim
h→0

a2 + h2 + 2ah− a2

h

= lim
h→0

h2 + 2ah

h

= lim
h→0

h(h+ 2a)

h
= lim

h→0
h+ 2a

= 2a

ää We can tweak the derivative at a specific point a to obtain the derivative as a
function x. We replace

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

with

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

This gives us the following definition.
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Definition. Let f(x) be a function

• The derivative of f(x) with respect to x is

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

provided the limit exists.

• If the derivative f ′(x) exists for all x ∈ (a, b) we say that f is differentiable
on (a, b).

• Note that we will sometimes be a little sloppy with our discussion and simply
write “f is differentiable” to mean “f is differentiable on an interval we are
interested in” or “f is differentiable everywhere.”

Example 2.2.5. Let f(x) = 1
x

and compute its derivative with respect to x.

Solution. We have that

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

1
x+h
− 1

x

h

= lim
h→0

1

h

[
1

x+ h
− 1

x

]
= lim

h→0

1

h

x− (x+ h)

x(x+ h)

= lim
h→0

1

h

−h
x(x+ h)

= − 1

x2
.

y =
1

x
y =
−1

x2

ää Notice that the original function f(x) = 1
x

was not defined at x = 0, and the deriva-
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tive is also not defined at x = 0. This does happen more generally–if f(x) is not defined
at a particular point x = a, then the derivative will not exist at that point either.

Notation. There are several notation all used for “the derivative of f(x) with respect
to x”; however,

in this course we generally use the following notations

1. f ′(x). This notation is due to Lagrange, and we read it as “f -prime of x”.

2. df
dx

. This notation is duo to Leibniz, and we read it as “dee-f–dee–x”.

3. d
dx
f . We read this as dee–by–dee–x of f .

Example 2.2.6. Compute the derivative, f ′(a), of the function f(x) =
√
x at the

point x = a for any a > 0.

Solution. We have that

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

x→a

√
x−
√
a

x− a

We now multiply the numerator and denominator by the conjugate of
√
x −
√
a,

that is
√
x+
√
a. Then we have

√
x−
√
a

x− a
×
√
x+
√
a√

x+
√
a

=
x− a

(x− a)(
√
x+
√
a)

=
1√

x+
√
a
.

Therefore,

f ′(a) = lim
x→a

√
x−
√
a

x− a
= lim

x→a

1√
x+
√
a

=
1

2
√
a
.
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Example 2.2.7. Find the derivative, f ′(a), of the function f(x) = |x| at the point
x = a.

Solution. Recall that

|x| =


−x x < 0

0 x = 0

x x > 0

We should break our computation of the derivative into three cases depending on
whether x is positive, negative, or zero.

• Assume x > 0. Then

df

dx
= lim

h→0

f(x+ h)− f(x)

h

= lim
h→0

|x+ h| − |x|
h

Since x > 0 and h is much more smaller than x, we have x + h > 0 and so
|x+ h| = x+ h, moreover, since x is positive, |x| = x.

lim
h→0

|x+ h| − |x|
h

= lim
h→0

x+ h− x
h

= lim
h→0

h

h
= 1.

• Assume x < 0. Then we have

df

dx
= lim

h→0

f(x+ h)− f(x)

h

= lim
h→0

|x+ h| − |x|
h

Since x < 0 and h is much more smaller than x, we have x + h < 0 and so
|x+ h| = −(x+ h), moreover, since x < 0 is positive, |x| = −x.

lim
h→0

|x+ h| − |x|
h

= lim
h→0

−(x+ h)− (−x)

h

= lim
h→0

−h
h

= −1.
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• Assume x = 0. Then we have

df

dx
= lim

h→0

f(0 + h)− f(0)

h

= lim
h→0

|h|
h

Consider that

lim
h→0+

|h|
h

= 1 and lim
h→0−

|h|
h

= −1

Therefore, this limit does not exist and so the function |x| is not derivative at x = 0.

In summary:

d

dx
|x| =


−1 x < 0

DNE x = 0

1 x > 0
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ää Where is the derivative undefined? The derivative f ′(a) exists precisely
when the limit

lim
x→a

f(x)− f(a)

x− a
exists. That limit is the slope of the tangent line to the curve y = f(x) at x = a.
Thus, that limit does not exist one of the following happens.

¶ The curve y = f(x) does not have a tangent line at x = a when it has a sharp
corner at x = a, as an example f(x) = |x| is not differentiable at x = 0 since
it has a sharp corner at x = 0.

· When the curve does have a tangent line because it is not continuous at x = a.

As an example, we have seen that f(x) = H(x) =

{
0 x ≤ 0

1 x > 0
does not have

a tangent line at x = 0 since it is not continuous at x = 0.

¸ When the curve has a tangent line at x = a but the slope of the tangent line
at x = a is infinity. As an example, f(x) = x1/3 is not differentiable at x = 0
since it has a tangent line with slope infinity.
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Example 2.2.8. Verify that the function

H(x) =

{
0 x ≤ 0

1 x > 0

does not have a tangent line at x = 0.

Solution. Consider that if the tangent line exists then the following limit also must
exists,

lim
h→0

H(0 + h)−H(0)

h
.

Consider that

lim
h→0+

H(0 + h)−H(0)

h
= lim

h→0+

1

h
= +∞

and

lim
h→0−

H(0 + h)−H(0)

h
= lim

h→0−

0

h
= 0.

Therefore, the limit does not exists.
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Example 2.2.9. Verify that the derivative of f(x) = x1/3 at x = 0 does not exist.

Solution. You can already see in the graph that the derivative at x = 0 does not
exist since the tangent line has infinite slope. However, we need a mathematical
proof, and we should show that f ′(0) which is the same as the following limit

lim
h→0

f(0 + h)− f(0)

h

does not exist. We have

lim
h→0

(0 + h)1/3 − 01/3

h
= lim

h→0

h1/3

h
= lim

h→0

1

h2/3
= +∞

( or we can say DNE).

Example 2.2.10. Verify that the derivative of f(x) =
√
|x| at x = 0 does not

exist.

Solution. Even though you can see in the graph that at x = 0, the graph has a
sharp corner, we also show that the following limit doesn’t exist,

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

√
|h| − 0

h
.

Consider that

lim
h→0+

√
|h|
h

= lim
h→0+

√
1√
h

= +∞

(or DNE).
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ää What is the relation between continuity and differentiability?

Theorem 2.2.11. If the function f(x) is differentiable at x = a, then f(x) is also
continuous at x = a.

Theorem 2.2.12. If f(x) is not continuous at x = a, then it is not differentiable
at x = a.

2.3 Interpretations of the Derivative

Interpretation of the derivative:

• the instantaneous rate of change of a quality

• the slope of a curve.

ää Instantaneous Rate of Change

Assume that we have the function f(t) of the measuring of some quantity. Then

average rate of change of f(t) from t = a to t = a+ h is

change in f(t) from t = a to t = a+ h

length of time from t = a to t = a+ h

=
f(a+ h)− f(a)

h
.

And so

instantaneous rate of change of f(t) at t = a

= lim
h→0

[average rate of change of f(t) from t = a to t = a+ h]

= lim
h→0

f(a+ h)− f(a)

h
= f ′(a).

Example 2.3.1. You drop a ball from a tall building. After t seconds the ball has
fallen a distance of s(t) = 4.9t2 meters. What is the (instantaneous) velocity of the
ball one second after it is dropped?

Solution. Since the instantaneous velocity is actually the instance rate of change
if distance, we should compute f ′(1). Computing the limit of the derivative we have

f ′(t) = 9.8t and f ′(1) = 9.8.
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Example 2.3.2. You are taking a walk and that as you walk, you are continuously
measuring some quantity, like temperature, and that the measurement at time t is
f(t) =

√
t. What is the average rate of f(t) =

√
t from t = 1 to t = 2? What is

the instantaneous rate of change of f(t) at t = 1?

Solution. Consider that the average rate of change is

f(a+ h)− f(a)

h

The difference between times is h, so h = 2− 1 = 1. Therefore, the average is

f(a+ h)− f(a)

h
=
f(2)− f(1)

1
=
√

2− 1.

The instantaneous rate of change is f ′(1). We already have seen that f ′(t) = 1
2
√
t
,

and so f ′(1) = 1
2
.

ää Slope and the formula for the tangent line to a curve at x = a

We know that the slope of a function at x = a is f ′(a). To find the tangent line we
need to find a point at the tangent line; however, for sure we know that (a, f(a)) is
on the tangent line. So we should find the equation for a line that passes through
(a, f(a)) with slope f ′(a) which is

y = f(a) + f ′(a)(x− a).

Theorem 2.3.3. The tangent line to the curve y = f(x) at x = a is given by the
equation

y = f(a) + f ′(a)(x− a)

provided the derivative f ′(a) exists.
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Example 2.3.4. Find the tangent line to the curve y =
√
x at x = 4.

Solution. By the above theorem we have the equation for the tangent line is

y = f(a) + f ′(a)(x− a).

Note that a = 4 and so f(a) = f(4) =
√

4 = 2. We have already had f ′(x) = 1
2
√
x
.

Therefore, f ′(a) = f ′(4) = 1
2
√
4

= 1
4
. And so the equation for the tangent line is

y = 2 +
1

4
(x− 4).
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2.4 Arithmetic of Derivatives - a Differentiation Tool-

box

It is more efficient to have access to

• a list of derivatives of some simple functions and

• a collection of rules for breaking down complicated derivative computations into
sequence of simple derivative computations.

ää A list of derivative of some simple functions:

d

dx
1 = 0

d

dx
x = 1

d

dx
x2 = 2x

d

dx

√
x =

1

2
√
x
.

Tools

Theorem 2.4.1. Let f(x) and g(x) be differentiable functions and let c, d ∈ R.
Then

d

dx
{f(x) + g(x)} = f ′(x) + g′(x)

d

dx
{f(x)− g(x)} = f ′(x)− g′(x)

d

dx
{cf(x)} = cf ′(x)

d

dx
{f(x)g(x)} = f ′(x)g(x) + g′(x)f(x)

d

dx
{f(x)

g(x)
} =

f ′(x)g(x)− g′(x)f(x)

g(x)2
g(x) 6= 0

ä d
dx
{cf(x) + dg(x)} = cf ′(x) + dg′(x)

ä d
dx
{f(x)2} = 2f(x)f ′(x)

ä d
dx
{ 1
g(x)
} = −g′(x)

g(x)2
g(x) 6= 0

2.5 Using the Arithmetic of Derivatives - Examples

Example 2.5.1.

d

dx
4x+ 6 = 4.

d

dx
{x}+ 7.

d

dx
{1}

= 4.1 + 7.0 = 4.
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Example 2.5.2.

d

dx
{x(4x+ 7)} =

d

dx
{x}(4x+ 7) + x

d

dx
{4x+ 7}

= 4x+ 7 + 4x = 8x+ 7

Example 2.5.3.

d

dx
{ x

(4x+ 7)
} =

d
dx
{x}(4x+ 7)− x d

dx
{4x+ 7}

(4x+ 7)2

=
4x+ 7− x(4)

(4x+ 7)2
=

7

(4x+ 7)2
.

Example 2.5.4. Differentiate

f(x) =
x

2x+ 1
3x+1

Solution. Let

f1(x) = x and f2(x) = 2x+
1

3x+ 1

Let

f3 = 2x and f4(x) =
1

3x+ 1
.

Therefore,

f(x) =
f1(x)

f2(x)

and so

f ′(x) =
f ′1(x)f2(x)− f ′2(x)f1(x)

f2(x)2
.

Consider that f ′1(x) = 1. We have that f2(x) = f3(x) + f4(x), and thus

f ′2(x) = f ′3(x) + f ′4(x) = 2 +
−3

(3x+ 1)2
.

Therefore,

f ′(x) =
1× 2x+ 1

3x+1
− 2 + −3

(3x+1)2
x

(2x+ 1
3x+1

)2
.

If we clean up this formula we have

f ′(x) =
6x+ 1

(6x2 + 2x+ 1)2
.
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Tools

Corollary 2.5.5. Let n be an integer.

d

dx
{f(x)g(x)h(x)} = f ′(x)g(x)h(x) + f(x)g′(x)h(x) + f(x)g(x)h′(x)

d

dx
{f(x)n} = nfn−1(x)f ′(x).

Example 2.5.6. Let n be an integer, differentiate

g(x) = xn

Solution. Let f(x) = x. Consider that g(x) = f(x)n, by the above theorem we
have

g′(x) = nf(x)f(x)n−1 = n× 1× xn−1 = nxn−1.

Example 2.5.7. Differentiate

1. f(x) = (3x+ 9)(x2 + 4x3)

2. 4x3−7x
4x2+1

Solution. (1) Let f1(x) = 3x+ 9 and f2(x) = x2 + 4x3.

f(x) = f1(x)f2(x) and f ′(x) = f ′1(x)f2(x) + f ′2(x)f1(x).

Note that
f ′1(x) = 3 and f ′2(x) = 2x+ 12x2.

Therefore,

f ′(x) = 3× (x2 + 4x3) + (2x+ 12x2)× (3x+ 9) = 18x+ 117x2 + 48x3.

(2) Let f1(x) = 4x3 − 7x and f2(x) = 4x2 + 1. Then

f(x) =
f1(x)

f2(x)
and f ′(x) =

f ′1(x)f2(x)− f ′2(x)f1(x)

f2(x)2
.

Consider that
f ′1(x) = 12x2 − 7 and f ′2(x) = 8x.

Therefore,

f ′(x) =
(12x2 − 7)(4x2 + 1)− (8x)(4x3 − 7x)

(4x2 + 1)2
.

After clean up,

f ′(x) =
16x4 + 40x2 − 7

(4x2 + 1)2
.
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Tools

Corollary 2.5.8. Let a be a rational number, then

d

dx
xa = axa−1.

Example 2.5.9. The derivative of f(x) = x1/3 is f ′(x) = (1/3)x1/3−1 =
(1/3)x−2/3 = 1

x2/3
.

Example 2.5.10. Find the derivative of

f(x) =
(
√
x− 1)(2− x)(1− x2)√

x(3 + 2x)

Solution. Let f1(x) = (
√
x− 1)(2− x)(1− x2) and f2(x) =

√
x(3 + 2x). Then

f ′(x) =
f ′1(x)f2(x)− f ′2(x)f1(x)

f2(x)2
. (2.5.1)

Let f3(x) = (
√
x− 1), f4(x) = (2− x) and f5(x) = (1− x2). Then

f1(x) = f3(x)f4(x)f5(x)

and
f ′(x) = f ′3(x)f4(x)f5(x) + f3(x)f ′4(x)f5(x) + f3(x)f4(x)f ′5(x).

Consider that

f ′3(x) =
1

2
√
x
, f ′4(x) = −1, and f ′5(x) = −2x.

Therefore,

f ′1(x) = (
1

2
√
x

)(2− x)(1− x2) + (
√
x− 1)(−1)(1− x2) + (

√
x− 1)(2− x)(−2x).

Also,

f ′2(x) =
1

2
√
x

(3 + 2x) + 2
√
x.

So we now substitute in 2.5.1 and we have the derivative of f(x).
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2.6 Derivatives of Exponential Functions

So far we have seen the derivative for some family of functions such as

• polynomials,

• rational functions, and powers and roots of rational functions.

ää Looking for a function f(x) such that d
dx
f(x) = f(x):

Now we want to find the derivative of exponential functions, that is, if a > 0 what
is the derivative of f(x) = ax. By the definition of the derivative, we have the
derivative of f(x) = ax with respect to x is

d

dx
ax = lim

h→0

a(x+h) − ax

h
= lim

h→0
ax
ah − 1

h
= ax lim

h→0

ah − 1

h
.

For a moment let assume that

C(a) = lim
h→0

ah − 1

h

exists. Therefore,
d

dx
ax = axC(a).

If we can find a such that C(a) = 1, it turns to be very useful.

Theorem 2.6.1. C(a) = 1 when a = e, where

e = 2.7182818284590452354 . . .

= 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ . . .

Therefore,
d

dx
ex = ex and lim

h→0

eh − 1

h
.
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Therefore, we have

• e0 = 1

• ex+y = exey

• e−x = 1
ex

• (ex)y = exy

•
lim
x→∞

ex =∞ lim
x→−∞

ex = 0.

Example 2.6.2. Find a such that the following function is continuous.

f(x) =

{
ex+a x < 0√
x+ 1 x ≥ 0

Solution. Consider that both functions ex+a for any a ∈ R and
√
x+ 1 are contin-

uous, so we only need to check that if this function is continuous at x = 0. Consider
that if the function f(x) is continuous at x = 0, then we must have

lim
x→0−

f(x) = lim
x→0+

f(x) = f(0) = 1.

Note that
lim
x→0−

f(x) = lim
x→0−

ex+a = ea

and
lim
x→0+

f(x) = lim
x→0+

√
x+ 1 = 1.

Therefore, we must have ea = 1 and so a = 0.
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ää äLogarithmic Functions:

We are about to define “logarithm with base q”. The number q can be any positive
number, however, we restrict our attention to q > 1 since the only q’s that are ever
used are e (we will see what e is in the next pages). Let q = 10, then we have the
following:

• limx→+∞ 10x =∞

• limx→−∞ 10x = 0

Actually, the function logq(x) is the inverse of the function qx. For learning about
inverse functions see section 0.6. So we have the following definition.

Definition. Let q > 1. Then the logarithm with base q is defined by

y = logq(x)⇔ x = qy

Obviously, we have the following.

logq(q
x) = x qlogq(x) = x

Example 2.6.3. We have

1. logq(xy) = logq(x) + logq(y).
The reason for this is that

qlogq(xy) = xy = qlogq(x)qlogq(y) = qlogq(x)+logq(y)

Therefore, logq(xy) = log(x) + log(y).

2. logq(x/y) = logq(x)− logq(y)

3. logq(x
r) = r logq(x)
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Example 2.6.4. We now show that

logq(x) =
log10(x)

logq(10)
.

Solution. Let logq(x) = y. Then

qy = qlogq(x) = x.

We take log base 10 of both sides

log10 q
y = log10 x.

Then
y log10 q = log10(x)

Therefore,

logq(x) =
log10(x)

logq(10)
.

Tools: Chain Rule

Theorem 2.6.5. Let f and g be differentiable functions. Then

d

dx
(f ◦ g)(x) = g′(x)f ′(g(x)).

Let a > 0 and
ax = eloge(a

x) = ex loge a

Let f(x) = ex and g(x) = x loge a. Then

(f ◦ g)(x) = ex loge a = ax.

Therefore,

d

dx
(f ◦ g)(x) = g′(x)f ′(g(x)) = (loge a)ex loge a = (loge a)ax.

The derivative of ax

Theorem 2.6.6. Let a > 0 and f(x) = ax. Then

d

dx
ax = (loge a)ex loge a = (loge a)ax.

Example 2.6.7. Find the derivative of 2
√
x.

Solution. Let f(x) = 2x and g(x) =
√
x. Then

f ◦ g(x) = 2
√
x.
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Therefore,
d

dx
2x = g′(x)f ′(g(x)).

We have g′(x) = 1
2
√
x

and f ′(x) = (loge 2)2x. Thus,

d

dx
2x = g′(x)f ′(g(x)) =

1

2
√
x

(loge 2)2
1

2
√
x .

Example 2.6.8. Find a and b such that the following function is differentiable.

f(x) =

{
x3 + a x < 1

ex−1 + bx x ≥ 1

Solution. We first know that this function must be continuous, thus the left hand side
limit at 1 must be equal to the right hand side limit at 1. We have

lim
x→1+

f(x) = lim
x→1+

ex−1 + bx = 1 + b

lim
x→1−

f(x) = lim
x→1−

x3 + a = 1 + a,

and so 1 + a = 1 + b ⇒ a = b. Moreover, by the definition of the derivative, if f(x) is
differentiable at 1 then we must have

lim
h→0

f(1 + h)− f(1)

h

must exists. Therefore,

lim
h→0+

f(1 + h)− f(1)

h
= lim

h→0−

f(1 + h)− f(1)

h

Note that

lim
h→0+

f(1 + h)− f(1)

h
= lim

h→0+

ex+h−1 + b(x+ h)− (1 + b)

h
=

d

dx
|x=1(e

x−1 + bx) = b.

Also,

lim
h→0−

f(1 + h)− f(1)

h
= 3

Therefore, b = 3 and a = 3.



2.7. DERIVATIVES OF TRIGONOMETRIC FUNCTIONS 59

2.7 Derivatives of trigonometric functions

Remember that

tan(x) =
sin(x)

cos(x)
cot(x) =

cos(x)

sin(x)
=

1

tan(x)

csc(x) =
1

sin(x)
sec(x) =

1

cos(x)
.

Let see the graph of each of this functions.

sin(x) domain = R range = [−1, 1]

cos(x) domain = R range = [−1, 1]
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tan(x) =
sin(x)

cos(x)
domain = R− {(2n+ 1)

π

2
: n ∈ Z} range = R

cot(x) =
cos(x)

sin(x)
domain = R− {nπ : n ∈ Z} range = R
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sec(x) =
1

cos(x)
domain = R− {(2n+ 1)

π

2
: n ∈ Z} range = R \ (−1, 1)

csc(x) =
1

sin(x)
domain = R− {nπ : n ∈ Z} range = R− (−1, 1)
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Question: Knowing that

cosh ≤ sinh

h
≤ 1

compute the derivative of sin(x) at x = 0.

Solution. Consider that by the definition of the derivative of a function, we have

d

dx
|x=0 sin(x) = lim

h→0

sin(0 + h)− sin(0)

h
= lim

h→0

sin(h)

h

Since limh→0 cos(h) = 1 = limh→0 1, and cosh ≤ sinh
h
≤ 1, by the sandwich theorem

we have

lim
h→0

sin(h)

h
= 1

The derivative of sin(x) and cos(x)

Theorem 2.7.1. If f(x) = sin(x) and g(x) = cos(x). Then

f ′(0) = lim
h→0

sinh

h
= 1 g′(0) = lim

h→0

cosh− 1

h
= 0.

And in general we have that

Theorem 2.7.2.

d

dx
sin(x) = cos(x)

d

dx
cos(x) = − sin(x).
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The derivative of trigonometric functions

Theorem 2.7.3.

d

dx
tan(x) = sec2(x)

d

dx
cot(x) = − csc2(x)

d

dx
csc(x) = − csc(x) cot(x)

d

dx
sec(x) = sec(x) tan(x).

2.8 One More Tool—the Chain Rule

Write all of the tools that we have had so far.

You are out in the woods and are walking towards your camp fire. The heat form the
fire means that the air temperature depends on your position. Let your position at time
t be x(t). The temperature of the air at position x is f(x). What instantaneous rate of
change of temperature do you feel at time t.

• Because your position at time t is x(t), the temperature you feel at time t is F (t) =
f(x(t)).

• The instantaneous rate of change of temperature that you feel is F ′(t). We have a
complicated function, F(t), constructed by composing two simple functions, x(t),
and f(x).

• We wish to compute the derivative, F ′(t) = d
dt
f(x(t)), of the complicated function

F (t) in terms of the derivatives, x′(t) and f ′(x), of the two simple functions. This
is exactly what the chain rule does.
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The chain rule

Theorem 2.8.1. Let a ∈ R and let g(x) be a function that is differentiable at
x = a. Now let f(u) be a function that is differentiable at u = g(a). Then the
function F (x) = f(g(x)) is differentiable at x = a and

F ′(a) = f ′(g(a))g′(a).

Theorem 2.8.2. Let f and g be differentiable functions then

d

dx
f(g(x)) = f ′(g(x)).g′(x)

Theorem 2.8.3. Let y = f(u) and u = g(x) be differentiable functions, then

dy

dx
=
dy

du

du

dx
.

Example 2.8.4. Find the derivative of (sin(x))5 with respect to x.

Solution. Let g(x) = sin(x) f(x) = x5. Then

f(g(x)) = (sin(x))5.

Therefore,
d

dx
f(g(x)) = g′(x)f ′(g(x)) = cos(x)(5 sin(x)4).

Example 2.8.5. Find the derivative of cos(3x− 2) with respect to x.

Solution. Let f(x) = cos(x) and g(x) = 3x− 2. Then f(g(x)) = cos(3x− 2), and
so

d

dx
cos(3x− 2) = g′(x)f ′(g(x)) = 3×− sin(3x− 2).

Example 2.8.6. Find the derivative of the function F with respect to t where

F (x) = secx x(t) = et+1

Solution. Consider that
dF

dt
=
dF

dx

dx

dt
.

Note that
dF

dx
= sec(x) tan(x) = sec(et+1) tan(et+1)

and also dx
dt

= et+1. Therefore,

dF

dt
=
dF

dx

dx

dt
= et+1 sec(et+1) tan(et+1).
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Example 2.8.7. Find the derivative of 2
√
x.

Solution. Let f(x) = 2x and g(x) =
√
x. Then

f ◦ g(x) = 2
√
x.

Therefore,
d

dx
2x = g′(x)f ′(g(x)).

We have g′(x) = 1
2
√
x

and f ′(x) = (loge 2)2x. Thus,

d

dx
2x = g′(x)f ′(g(x)) =

1

2
√
x

(loge 2)2
1

2
√
x .

Example 2.8.8. Find the tangent line to the curve Find the derivative of y =
sin(2

√
x) with respect to x.

Solution. Let f(x) = sin(x) and g(x) = 2
√
x. Then f(g(x)) = sin(2

√
x) = y.

Therefore,
dy

dx
= f ′(g(x)).g′(x) = cos(2

√
x).

1

2
√
x

(loge 2)2
1

2
√
x

2.9 Inverse Functions

Functions are really just rules for taking an input, processing it somehow and then re-
turning an out put.

input number x 7→ f does “stuff” to x 7→ return number y

In many situations it will turn out to be very useful if we can undo whatever it is that
our functions has done. i.e,

take output y 7→ do “stuff” to y 7→ return the original number x

Definition. A function is one-to-one (injective) when it never takes the same value
more than once. That is

if x1 6= x2 then f(x1) 6= f(x2)

Definition. A function is one-to-one if and only if no horizontal line y = c inter-
sects the graph y = f(x) more than once.

Example 2.9.1. By the horizontal line test we will see that y = x3 is one to one in its
domain; however, y = x2 is not one to one in its domain, but if we restrict y = x2 to
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only zero or positive numbers is one to one.

R → R
x 7→ x3

is one-to-oe

R → R
x 7→ x2

is not one-to-oe

[0,∞) → R
x 7→ x2

is one-to-oe

Definition. Let f be a one-to-one function with domain A and range B. Then its
inverse function is denoted f−1 and has domain B and range A. It is defined by

f−1(y) = x whenever f(x) = y

for any y ∈ B.

So
f−1(f(x)) = x for any x ∈ A

f(f−1(y)) = y for any y ∈ B

Caveat. We should be careful not to confuse f−1(x) with 1
f(x)

.
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Example 2.9.2. What is the inverse of the following one to one functions.

1. f(x) = x5 + 3.

2. g(x) =
√
x− 1 on the domain x ≥ 1.

Solution. (1) Consider that y = x5 + 3 so y − 3 = x5, and then x = 5
√
y − 3.

Therefore, f−1(x) = 5
√
x− 3.

(2) Now consider that y =
√
x− 1, and so y2 = x − 1. Thus x = y2 + 1, and so

y = x2 + 1 is the inverse.

Consider the graph of sin(x) on the domain −∞ < x < +∞, it is easy to see that
this function is not one to one, but when we consider this function on the domain
−π/2 ≤ x ≤ π/2 this function is one to one and so it is invertible. The inverse
of the function sin(x) is arcsin(x) and its domain is [−1, 1] and its codomain is
[−π/2, π/2].

Finding the inverse of f(x) by its graph. Assume that we have drawn the
graph of a function, for example y = x2 on the domain x ≥ 0. To find its inverse
which is f−1(x) =

√
x, all you have to do is graph the function and then switch

all x and y values in each point to graph the inverse. Just look at all those values
switching places from the f(x) function to its inverse f−1(x) (and back again),
reflected over the line y = x.
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2.10 The Natural Logarithm

Consider the logarithm base e–loge x is the power that e must be raised to to give
x. That is, loge x is defined by

eloge x = x,

consequently, it is the inverse of the exponential function with base e.

Moreover, note that

logq x =
loge x

loge q

so we are free to chose a bases which is convenient for our purpose.

The logarithm with base e is called “natural logarithm”. The “naturalness” of loga-
rithms base e is exactly that this choice of base works very nicely in calculus.

There are several standard notation for the logarithm base e;

loge x = log x = lnx.

For any x, y > 0, the following hold:

• elog x = x,

• for any real number r, ln(er) = r.

• for any a > 1, loga x = lnx
ln a

and ln x = loga x
loga e

.

• ln(xy) = ln x+ ln(y)

• ln(x
y
) = ln x− ln y, and ln( 1

y
) = − ln y

• ln(xr) = r lnx

• limx→∞ lnx =∞ and limx→0 lnx = −∞.
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ä What is the derivative of lnx
To find the derivative of lnx if you go with the definition of the derivative you
don’t arrive to something that looks good. However, we have

x = elnx

and we know that if two functions are equal, then their derivative also are the same,
therefore,

d

dx
x =

d

dx
elnx.

By the chain rule we have

1 = (
d

dx
lnx)elnx.

Thus,

1 = (
d

dx
lnx)x

and so
d

dx
lnx =

1

x
.

Derivative of lnx

Theorem 2.10.1.
d

dx
lnx =

1

x
.

Example 2.10.2. Let f(x) = ln 3x. Find f ′(x).

Solution. Consider that ln 3x = ln 3 + lnx so f ′(x) = ln 3 + lnx and therefore,

f ′(x) =
1

x
.

Example 2.10.3. Let g(x) = ln |x|. Find g′(x).

Since |x| is not differentiable at x = 0, g(x) is not differentiable at x = 0. Now we
consider the following two cases:

• If x > 0, then |x| = x, and so

g′(x) =
d

dx
lnx =

1

x
.

• if x < 0, then |x| = −x. Let f1(x) = ln x and f2(x) = −x, then

g(x) = f1(f2(x))⇒ g′(x) = f ′1(f2(x))f ′2(x)

g′(x) =
1

−x
×−1 =

1

x
.
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What is d
dx

loga x

So we want now find the derivative of loga x; consider that

loga x =
lnx

ln a
.

Therefore,
d

dx
loga x =

1

ln a

1

x
.

ä What is the derivative of ln f(x)? Let f1(x) = ln x. Then

f1(f(x)) = ln f(x).

Therefore,
d

dx
f1(f(x)) = f ′1(f(x))f ′(x) =

1

f(x)
f ′(x).

Derivative of ln |f(x)|

ä Let f1(x) = ln |x| and f2(x) = f(x). Then

f1(f2(x)) = ln |f(x)|.

Therefore,
d

dx
ln |f(x)| = f ′1(f2(x))f ′2(x) =

1

f(x)
f ′(x)

ä What is the derivative of ax? We have

f(x) = ax

ln f(x) = x ln a

d

dx
ln f(x) = ln a.

Using the chain rule to process the left-hand side we have

f ′(x)

f(x)
= ln a

Therefore,
f ′(x) = f(x) ln a.

Then
f ′(x) = (ln a)ax.

Theorem 2.10.4.
d

dx
ax = ln a.ax for any a > 0

d

dx
loga x =

1

x. ln a
for any a > 0, a 6= 1
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Logarithmic Differentiation

ää Logarithmic Differentiation We want to compute the derivative of the
multiplication of three functions

p(x) = f(x)g(x)h(x)

by using the logarithm properties. Consider that

|p(x)| = |f(x)||g(x)||h(x)|

ln |p(x)| = ln |f(x)||g(x)||h(x)| = ln |f(x)|+ ln |g(x)|+ ln |h(x)|

Therefore,

d

dx
ln |p(x)| = d

dx
ln |f(x)|+ d

dx
ln |g(x)|+ d

dx
ln |h(x)|

Thus
p′(x)

p(x)
=
f ′(x)

f(x)

g′(x)

g(x)

h′(x)

h(x)
⇒ p′(x) = p(x)(

f ′(x)

f(x)

g′(x)

g(x)

h′(x)

h(x)
).

Example 2.10.5. Compute the derivative of

f(x) =
(
√
x− 1)(2− x)(1− x2)√

x(3 + 2x)

Solution. Check that ln |f(x)| = f ′(x)
f(x)

for any function f(x). Since f(x) can be
negative and ln is not defined for negative numbers, we compute

ln |f(x)| = ln
|(
√
x− 1)||(2− x)||(1− x2)|
|
√
x||(3 + 2x)|

=

ln |
√
x− 1|+ ln |(2− x)|+ ln |(1− x2)| − ln |

√
x| − ln |3 + 2x|

Therefore,

f ′(x)

f(x)
=

1/(2
√
x)√

x− 1
+
−1

2− x
+
−2x

1− x2
− 1/(2

√
x)√

x
− 2

3 + 2x
.

So we have that

f ′(x) = f(x)(
1/(2
√
x)√

x− 1
+
−1

2− x
+
−2x

1− x2
− 1/(2

√
x)√

x
− 2

3 + 2x
)
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2.11 Implicit Differentiation

Let’s go back to see how we find the derivation of y = ln x. We first have that x = elnx

and then we showed that
d

dx
x =

d

dx
elnx (

d

dx
x =

d

dx
ey)

which is the same as

1 = (
d

dx
lnx).elnx (1 = y′ey).

Note that elnx = x(ey = x), thus

1 = (
d

dx
lnx).x (1 = y′x)

and so
d

dx
lnx =

1

x
(y′ =

1

x
).

Example 2.11.1. Find the equation of the tangent line to y = y3 + xy + x3 at
x0 = 1.

Solution. Consider that for finding the tangent line we need a point on the curve
and also the slope at the point. We already know that the point that we want to
find the curve at has x0 = 1, to find y0 we plug in x = 1 in the equation and then
solve it, so after plugging in x = 1 we have

y = y3 + y + 1

which we can see that y3 = −1 and so y = −1. Therefore, we want to find the
tangent line at (x0, y0) = (1,−1). Rewrite the equation as

f(x) = f(x)3 + xf(x) + x3.

Now when we do the derivation with respect to x, we have

f ′(x) = 3f ′(x)f(x)2 + f(x) + xf ′(x) + 3x2.

So we have that

f ′(x0) = 3f ′(x0)f(x0)
2 + f ′(x0) + x0f

′(x0) + 3x20.

Consider that x0 = 1 and f(x0) = y0 = −1. Therefore,

f ′(1) = 3f ′(1)f(1)2 + f(1) + f ′(1) + 3⇒ f ′(1) = 3f ′(1)(−1)2 + (−1) + f ′(1) + 3.

Consequently,

f ′(1) =
−2

3
.

Therefore, the equation for the tangent line is

y = −1 +
−2

3
(x− 1)⇒ 3y + 2y = −1.
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In the next example, instead of substituting y by f(x) we just keep in mind that y is
a function of x and its derivative with respect to x is y′.

Example 2.11.2. Let (x0, y0) be a point on the ellipse 3x2 + 5y2 = 7. Find the
equation for the tangent lines when x = 1 and y is positive. Then find an equation
for the tangent line to the ellipse at a general point (x0, y0).

Solution. First we want to find the equation of the tangent line at x = 1 and y is
positive. We need a point (1, y0) at the curve such that y0 > 0. We again plug in
x = 1 in the equation, then we have

3(1)2 + 5(y(1))2 = 7⇒ (y(1))2 =
4

5
,

thus

y(1) = ± 2√
5
.

Since we have that y > 0, thus we find the tangent line at (1, 2√
5
). Now we want to

find y′ at x = 1. Note that
6x+ 10yy′ = 0

so when x = 1

6× 1 + 10y(1)y′(1) = 0⇒ 6 + 10
2√
5
y′(1) = 0

thus

y′(1) =
−6
√

5

10× 2
=
−3

2
√

5
.

Therefore, the equation for the tangent line is

y =
2√
5

+
−3

2
√

5
(x− 1).

Solution. (the tangent line at some arbitrarily point (x0, y0)) Now we want to find the
tangent line at some arbitrarily point (x0, y0) where y(x0) = y0 on the curve. We need
first to find the derivative at y′(x0) which is the slope of the tangent line. Consider that

6x+ 10yy′ = 0

Thus,

y′ =
−6x

10y
⇒ y′(x0) =

−6x0
10y0

so the equation for the tangent line is

y = y0 +
−6x0
10y0

(x− x0),

thus

y = y0 +
−3x0
5y0

x− −3x0
5y0

x0
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and so

5yy0 = 5y20 − 3x0x+ 3x20 ⇒ 5yy0 + 3x0x = 5y20 + 3x20

Note that 5y20 + 3x20 = 7 therefore, the equation for the tangent line is

5yy0 + 3x0x = 7.

Example 2.11.3. At which points does the curve x2−xy+y2 = 3 cross the x-axis?
Are the tangent lines to the curve at those points parallel?

Solution. Note that a curve cross the x-access when y = 0. Therefore, when we
have y = 0, then x2 = 3, and so x = ±

√
3. Thus, both points (

√
3, 0) and (−

√
3, 0)

are on the curve and we want to find the tangent lines at these two points. Consider
that the implicit derivative of this curve is

2x− y − xy′ + 2yy′ = 0

Now when x =
√

3 and y = 0, then

2
√

3− 0−
√

3y′(
√

3) + 2× 0× y′(
√

3) = 0⇒ 2
√

3−
√

3y′(
√

3) = 0

and so y′(
√

3) = 2.
Now when x = −

√
3 and y = 0, we have

−2
√

3− 0 +
√

3y′(
√

3) + 2× 0× y′(
√

3) = 0⇒ − 2
√

3 +
√

3y′(
√

3) = 0.

Again we have y′(−
√

3) = 2.
Since the slope of the tangent lines at (

√
3, 0) and (−

√
3, 0) are both 2, and since

ant two lines with the same slope are parallel, we have that the two tangent lines
are parallel.
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Example 2.11.4. Let (x0, y0) be a point on the astroid

x2/3 + y2/3 = 1.

Find the equation of the tangent line to the astroid at (x0, y0).

Solution. Let assume that x0 6= 0 and y0 6= 0. Note that we have

(2/3)x−1/3 + (2/3)y′y−1/3 = 0

Therefore,

y′ = − 3

√
y

x

Therefore, the derivative at x = x0 is

y′(x0) = − 3

√
y0
x0

and the equation for the tangent line is

y = y0 − 3

√
y0
x0

(x− x0).
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2.12 Inverse of trigonometric functions

Remember that the inverse of a one-to-one function f(x) with domain A and range B is
a function g(x) with domain B and range A such that

f(g(y)) = y g(f(x)) = x x ∈ A, y ∈ B.

Consider the graph of sin(x) on the domain −∞ < x < +∞, it is easy to see that
this function is not one to one, but when we consider this function on the domain
−π/2 ≤ x ≤ π/2 this function is one to one and so it is invertible. The inverse
of the function sin(x) is arcsin(x) and its domain is [−1, 1] and its codomain is
[−π/2, π/2].

arcsin(x)

Therefore we have that arcsin(x) with domain [−1, 1] and range [−π/2, π/2] is the
inverse of the function sin(x), thus we have

sin(arcsin(x)) = x when − π/2 ≤ arcsin(x) ≤ π/2

Now let talk about arcsin(sin(x)). Note that when −π/2 ≤ x ≤ π/2, then since
sin(x) in this interval is the inverse of arcsin(x) we must have

arcsin(sin(x)) = x.

Therefore,

arcsin(sin(π/2)) = π/2 and arcsin(sin(π/6)) = π/6

Example 2.12.1. 1. sin π/2 = 1 so arcsin(1) = π/2.

2. sin π/6 = 1/2 so arcsin(1/2) = π/6.
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Example 2.12.2. Consider that sin(2π) = 0, and since arcsin(x) is defined on the
interval [−1, 1], so this makes sense to ask what is arcsin(sin(2π))? Can we say
arcsin(sin(2π)) = 2π? For sure, no, because the range of arcsin(x) is [−π/2, π/2].
However,

arcsin(sin(x)) = the unique angle θ between −π/2 and π/2 obeying sin(θ) = sin(x).

Therefore, arcsin(sin(2π)) is the unique angle θ between −π/2 and π/2 obeying
sin(θ) = sin(2π) = 0, which is 0. Thus, arcsin(sin(2π)) = arcsin(sin(0)) = 0.

Example 2.12.3. What is arcsin(sin(11π
16

))?

Solution. arcsin(sin(x)) = the unique angle θ between −π/2 and π/2 obeying
sin(θ) = sin(x).

Therefore, arcsin(sin(11π
16

)) is the unique angle θ between −π/2 and π/2 obeying
that

sin(θ) = sin(
11π

16
).

Note that for function sin(x) we always have that

sin(π/2 + α) = sin(π/2− α)

thus in the case of 11π
16

, we have

sin(
11π

16
) = sin(π/2 +

3π

16
) = sin(π/2− 3π

16
) = sin(

5π

16
).

Since 5π
16

is between −π/2 and π/2, we must have

arcsin(sin(
11π

16
)) =

5π

16
.

ää Derivative of Inverse Trig Functions.
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d
dx

arcsin(x)

We have already seen the arcsin(x), let just write

θ(x) = arcsin(x)

We are looking to find d
dx
θ(x). We know that

sin(θ) = x

Using implicit derivation we have

cos(θ).
dθ

dx
= 1

and so
dθ

dx
=

1

cos(θ)

Consider that θ = arcsin(x), so by substitution in the above equation we have

dθ

dx
=

1

cos(arcsin(x))
.

We now try to find cos(arcsin(x)). Consider a right triangle where the length of
hypotenuse is 1 and with vertical side x and the angle opposite to x is θ, then

sin(θ) = x.

Note that arcsin(x) = θ, and so

cos(arcsin(θ)) = cos(θ) =
1√

1− x2
.

Consequently,
dθ

dx
=

1

cos(arcsin(x))
=

1√
1− x2

.

Therefore,
d

dx
arcsin(x) =

1√
1− x2

.
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Trigonometric functions

Definition. arcsin(x) is defined for |x| ≤ 1. It is the unique number obeying

sin(arcsin(x)) = x and − π/2 ≤ arcsin(x) ≤ π/2

arccos(x) is defined for |x| ≤ 1. It is the unique number oneying

cos(arccos(x)) = x and 0 ≤ arccos(x) ≤ π

arctan(x) is defined for all x ∈ R. It is the unique number obeying

tan(arctan(x)) = x and − π/2 < arctan(x) < π/2

arccot(x) is defined for all x ∈ R. It is the unique number obeying

cot(arccot(x)) = x and 0 < arccot(x) < π

arcsec(x) = arccos(1/x) is defined for |x| ≥ 1. It is the unique number obeying

sec(arcsec(x)) = x and 0 ≤ arcsec(x) ≤ π

arccsc(x) = arcsin(1/x) is defined for |x| ≥ 1. It is unique number obeying

csc(arccsc(x)) = x and − π/2 ≤ arccsc(x) ≤ π/2
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d
dx

arccos(x)

Example 2.12.4. We now wan to find the derivative of θ = arccos(x). Consider
that

cos(arccos(x)) = x

thus we have
cos(θ) = x

Using implicit derivative we have

−dθ
dx

sin(θ) = 1.

Therefore,
dθ

dx
=
−1

sin(θ)
⇒ dθ

dx
=

1

sin(arccos(x))
.

Again looking at the length of hypotenuse 1 and with horizontal side x, we have

cos(θ) = x

and so
sin(θ) =

√
1− x2.

Thus
d

dx
arccos(x) = − 1√

1− x2
.
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d
dx

arctan(x)

Example 2.12.5. Very similar steps give the derivative of arctan(x).

Solution. • Start with θ = arctan(x), so tan(θ) = x.

• Differentiate implicitly:

sec2(θ)
dθ

dx
= 1

dθ

dx
=

1

sec2(θ)
= cos2 θ

therefore,
d

dx
arctan(x) = cos(arctan(x)).

• drawing the relevant triangle we have

from which we can see

cos2(arctan(x)) = cos2(θ) =
1

1 + x2
.

• Thus d
dx

arctan(x) = 1
1+x2

.
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d
dx

arccot(x)

Example 2.12.6. An almost identical computation gives the derivative of arccot(x)

• Start with θ = arccot(x), so cot(θ) = x.

• Differentiate implicitly:

−csc2(θ)
dθ

dx
= 1

d

dx
arccot(x) =

dθ

dx
= − 1

csc(θ)
= − sin2(θ) = − 1

1 + x2
.

d
dx

arccsc(x)

Example 2.12.7. For the derivative of arccsc we can use the definition and the
chain rule.

θ = arccsc(x)

then

csc(θ) = x⇒ sin(θ) =
1

x

therefore,

θ = arcsin(
1

x
)

Now by using chain rule we can see

dθ

dx
=

d

dx
arcsin(

1

x
) =

1√
1− x−2

.
−1

x2
.

To simplify we have

dθ

dx
=

1√
x−2(x2 − 1)

.
−1

x2
=

1

x−1
√

(x2 − 1)
.
−1

x2
.

Note that |x−1|x2 = |x|. Therefore, the above expression becomes

1

|x|
√

(x2 − 1)
.
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d
dx

arcsec(x)

Example 2.12.8. By the same method as the above, we have

d

dx
arcsec(x) =

d

dx
arccos(

1

x
) = − 1√

1− 1/x2
.(− 1

x2
) =

1

|x|
√
x2 − 1

.

Derivative of the inverses of trigonometric functions in a nutshell

In a nutshell the derivatives of the inverse trigonometric functions are

d

dx
arcsin(x) =

1√
1− x2

d

dx
arccsc(x) = − 1

|x|
√
x2 − 1

d

dx
arccos(x) = − 1√

1− x2
d

dx
arcsec(x) =

1

|x|
√
x2 − 1

d

dx
arctan(x) =

1

1 + x2
d

dx
arccot(x) = − 1

1 + x2
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Application of Derivatives

3.1 Velocity and acceleration

Velocity and acceleration

If you are moving along the x-axis and your position at time t is x(t), then

• your velocity at time t is v(t) = x′(t) and

• your acceleration at time t is a(t) = v′(t) = x′′(t).

Example 3.1.1. Consider the following situation.

Suppose that you are moving along the x-axis and that at time t your position is
given by

x(t) = t3 − 3t+ 2

• If x′(t) > 0, then at that instant x is increasing, i.e., you are moving to the
right.

• If x′(t) = 0, then at that instant you are not moving at all.

• If x′(t) < 0, then at that instant x is decreasing, i.e., you are moving to the
left.

From the formula it is straight forward to see

v(t) = x′(t) = 3t2 − 3 = 3(t2 − 1) = 3(t+ 1)(t− 1).

This is zero when t = 1 or t = −1.

t (t− 1)(t+ 1) x′(t) = 3(t− 1)(t+ 1) Direction(left or right)

t < −1 positive positive right
t = −1 zero zero halt
−1 < t < 1 negative negative left

t = 1 zero zero halt
t > 1 positive positive right

87
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• For all t < −1, both (t+1) and (t−1) are negative, so v(t) = x′(t) = 3(t+1)(t−1) >
0.

• For all −1 < t < 1, the factor (t + 1) > 0 and the factor (t − 1) < 0 so v(t) =
x′(t) = 3(t+ 1)(t− 1) < 0.

• For t > 1, both (t+ 1) and (t− 1) are positive so v(t) = x′(t) = 3(t+ 1)(t− 1) > 0.

It is now easy to put together a mental image of your trajectory.

• For t < −1, v(t) = x′(t) > 0 so x(t) is increasing and you are moving to the right.

• At t = −1, v(−1) = 0 and you have come to a halt at position x(−1) = (−1)3 −
3(−1) + 2 = 4.

• For −1 < t < 1, v(t) = x′(t) < 0 so x(t) is decreasing and you are moving to the
left.

• At t = +1, v(1) = 0 and you have again come to a halt, but now at position
x(1) = 13 − 3 + 2 = 0.

• For t > 1, v(t) = x′(t) > 0 so that x(t) is increasing and you are again moving to
the right.

Here is a sketch of the graphs of x(t) and v(t).
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And here is a schematic picture of the whole trajectory.

Example 3.1.2. In the above example, what distance in total you have traveled
from t = 0 to t = 2?

• Consider that at time 0, you are at the position x(0) = 03 − 3 × 0 + 2 = 2.
From t = 0 to t = 1 since x′(t) < 0 you are moving to the left and at time 1
you will arrive to x(1) = 13 +−3× 1 + 2 = −1.

• And from t = 1 to t = 2 since x′(t) > 0 you are moving to the right and at
t = 2 you are at x(2) = 23 − 3× 2 + 2 = 4.

• Therefore, from t = 0 to t = 1 you traveled form the position x = 2 to x = −1
and form t = 1 to t = 2, you moved from x = −1 to x = 4, so in total you
traveled 8 meters.

Example 3.1.3. Suppose that you are moving along the x-axis and that at time t
your position is given by

x(t) = t3 − 12t+ 5

Find how many meters you have traveled from t = 0 to t = 10.

Solution.

Consider that v(t) = x′(t) = 3t2 − 12. it follows that

v(t) = 3(t2 − 4) = 3(t− 2)(t+ 2).

We can see that v(t) = 0 when t = 2 or t = −2, we have v(t) = 0, so at this two
times you are not moving.

However,

• For t < 2, v(t) = 3(t− 2)(t+ 2) > 0, and so you are moving to the right.

• For −2 < t < 2, v(t) = 3(t− 2)(t+ 2) < 0, so you are moving to the left.

• For t > 2, v(t) > 0 and you are moving to the right.
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• At t = 0, you are at x(0) = 03 − 12 × 0 + 5 = 5 to the right of the origin.
Then from t = 0 to t = 2, you move to the left since your velocity is negative,
and your position is

x(2) = 23 − 12× 2 + 5 = −11

So from t = 0 to t = 2 you have moved from 5 meter to the right of the origin,
to −11 meter to the left of origin, so until t = 2 you have traveled 16 meters.

• From t > 2 since the velocity is positive, you are moving to the right, and
your position at t = 10 is x(10) = 103 − 12 × 10 + 5 = 885. So from t = 2
to t = 10, you have moved form −11 meters to the left of the origin to 885
meter to the right of the origin, so you have moved 11 + 885 meter.

Therefore, the total distance that you have traveled is 16 (from 0 to 2)+896(from
2 to 10)=912 meter.

In a nutshell we have

t (t− 2)(t+ 2) x′(t) = 3(t− 2)(t+ 2) Direction

t < −2 positive positive right
t = −2 zero zero halt
−2 < t < 2 negative negative left

t = 2 zero zero halt
t > 2 positive positive right

t your positionx(t) x′(t) Direction

0 5 negative left
t = 2 −11 zero halt
t = 10 885 positive right

Example 3.1.4. In this example, we are going to figure out how far a body falling from
rest will fall in a given time period.

• We should start by defining some variables and their units. Denote

– time in seconds by t,

– mass 1 in kilograms by m,

– distance fallen (in meters) at time t by s(t), velocity (in m/sec) by v(t) = s′(t)
and acceleration (in m/sec2) by a(t) = v′(t) = s′′(t).

• We have also the following information

(1) Newton’s second law: the force applied to the body at time t =m.a(t).

(2) the force due to gravity acting on a body of mass m = m.g.

1The difference between mass and weight is that mass is the amount of matter in a material, while
weight is a measure of how the force of gravity acts upon that mass.
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(3) The constant g, called the acceleration of gravity, is about 9.8m/sec2

• What result we can get from the above information: We now that the body fallen
from rest, so the initial velocity is 0, thus

v(0) = 0.

Moreover, the force from the Newton’s second law is the same as the forced applied
to body, so

m.a(t) = forceduetogravity

m.v′(t) = m.g

v′(t) = g

also g = 9.8 thus

v′(t) = 9.8

We can now guess that

v(t) = 9.8t+ c

• To find c we now that v(0) = 0, this

v(0) = 9.8t+ c = 0⇒ c = 0.

Now we want to find s(t), we have that

s′(t) = v(t) = 9.8t

We can guess that

s(t) =
9.8

2
t2 + c = 4.9t2 + c,

to find c we now that distance fallen at t = 0 is 0, thus

s(0) = 4.9× 02 + c = 0

and so c = 0. Therefore,

s(t) = 4.9t2.
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Example 3.1.5. A car’s brakes can decelerate the car at 64000km/hr2. How fast
can the car be driven if it must be able to stop within a distance of 50m?

Solution. First be very careful about the units since in this problem we have the
distance by meter but the acceleration is by km/hr2. So in this question we transfer
all distances to km.
What information we have:

1. We first have that a(t) = −64000km/hr2.

2.
a(t) = v′(t) = x′′(t)

3. We can choose a coordinate system such that x(0) = 0 and the car stars
braking at time t = 0.

4. If we let tstop be the time that after the brake the car stopes, then x(tstop) the
stopping distance is 0.05 km.

5. We want to determine the maximum initial velocity v(0).

By (1) we know that a(t) = −64000, and by (2) v′(t) = −64000. Thus,

v(t) = −64000t+ c

consider that v(0) = c. Therefore, we want to find the maximum amount for c.
Since x′(t) = v(t), therefore,

x′(t) = −64000t+ c ⇒ x(t) = −64000t

2
t2 + ct+ d

where x(0) = d. We already have set up our system in a way that x(0) = 0. Thus,
d = 0, and so

x(t) = −64000t

2
t2 + ct

Note that at t = tstop we have

0.05 = x(tstop) = −64000

2
t2stop + ctstop and 0 = v(tstop) = −64000tstop + c

The latter gives us tstop = c
64000

. The by plugging in the former equation we have

0.05 = −64000

2
(

c

64000
)2 + c

c

64000

Therefore,

0.05 = − c2

2× 64000
+

c2

64000
=

2c2 − c2

2× 64000
.

Consequently,
c2 = 6400.

and so c = 80. Therefore the velocity v(0) must be at most 80 km.
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3.2 Exponential Growth and Decay

A First Look at Differential Equations This is Section 3.3 of the textbook

3.2.1 Carbon Dating

Cosmic rays hitting the atmosphere convert nitrogen into a radioactive isotope of carbon,
C, with a half-life of about 5730 years. Vegetation absorbs carbon dioxide from the
atmosphere through photosynthesis and animals acquire C by eating plants. When a
plant or animal dies, it stops replacing its carbon and the amount of C begins to decrease
through radioactive decay.

Cosmic ray hitting atmosphere

Nitrogen (N)→ Carbon(C)

V egetation absorbs C through photosynthesis

Animals acquire C by eating plants

C decreases when animal dies

More precisely, let Q(t) denote the amount of C (an element) in the plant or animal
t years after it dies. The number of radioactive decays (rate of change) per unit
time, at time t, is proportional to the amount of C present at time t, which is Q(t).
Thus

Radioactive Decay

dQ

dt
(t) = −kQ(t) (3.2.1)
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Now the question is which function Q(t) satisfies the Radioactive Decay equation
dQ
dt

(t) = −kQ(t)? Consider that if

Q(t) = ce−kt

where c is a constant, then we have

dQ

dt
(t) =

d

dt
(ce−kt) = −cke−kt = −kQ(t).

Moreover, if Q(t) = ce−kt, then Q(0) = ce−k.0 = Q(0), so the equation becomes
Q(t) = Q(0)e−kt.

Therefore, Q(t) = ce−kt is one of the solutions to the equation above, but is it the

only solution? we answer this question by claiming that d
dt

(
Q(t)
e−kt

)
= 0 and thus we have

Q(t)
e−kt is a constant c which means Q(t) = ce−kt. Consider that

d

dt

(
Q(t)

e−kt

)
=

d

dt
(ektQ(t)) = kektQ(t) + ektQ′(t) = ekt(kQ(t) +Q′(t)). (3.2.2)

We already have dQ
dt

(t) = −kQ(t) which is equivalent to Q′(t) + kQ(t) = 0. Therefore, by
looking at the equation 3.2.2, we have

d

dt

(
Q(t)

e−kt

)
= 0

which proofs the claim.

Theorem 3.2.1. A differentiable function Q(t) obeys the differential equation

dQ

dt
(t) = −kQ(t)

if and only if there is a constant c such that

Q(t) = ce−kt.

Corollary 3.2.2. The function Q(t) satisfies the equation

dQ

dt
= −kQ(t)

if and only if
Q(t) = Q(0).e−kt

The half-life (the half-life of C is the length of time that it takes for half of the C
to decay) is defined to be the time t1/2 which obeys

Q(t1/2) =
1

2
.Q(0).

The half-life is related to the constant k by

t1/2 =
ln 2

k
.
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Example 3.2.3. The half-life of carbon is 5730 years. A particular piece of parch-
ment contains about 64% as much C as plants to today. Estimate the age of the
parchment.

Solution. Let Q(t) denote the amount of C in the parchment t years after it was
first created. We want to find a time t such that Q(t) = 0.64Q(0). By the formula
t1/2 = ln 2

k
we have

5730 =
ln 2

k
.

Thus k = ln 2
5730

= 0.000121. Therefore, by the above corollary,

Q(t) = Q(0).e−kt.

Since we want to find t such that Q(t) = 0.64Q(0), thus the time t we are looking
for is 0.64Q(0) = Q(0).e−kt. Therefore,

0.64 = e−kt,

so

−kt = ln 0.64⇒ t =
ln 0.64

−k
=

ln 0.64

−0.000121
= 3700.

Example 3.2.4. A scientist is studying a sample of the rare element implausium.
With great effort he has produced a sample of pure implausium. The next day—17
hours later—he comes back to his lab and discovers that his sample is now only
37% pure. What is the half-life of the element.

Solution. Let Q(t) denote the quantity of implausium at time t, measure in hours.
Then we know that

Q(t) = Q(0)e−kt ⇒ Q(17) = Q(0)e−17k

and since after 17 hours the quantity is 37% pure,

Q(17) = 0.37Q(0).

By the above two equation we have

Q(0)e−17k = 0.37Q(0)⇒ e−17k = 0.37

and so

k = − ln 0.37

17
= 0.05849.

Therefore,

t1/2 =
ln 2

k
=

ln 2

0.05849
≈ 11.85.
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3.2.2 Newtwon’s Law of Cooling

Newton’s Law of Cooling

The rate of change of temperature of an object is proportional to the difference
in temperature between the object and its surroundings. The temperature of the
surroundings is sometimes called the ambient temperature.

We translate this statement into the following differential equation.

Newton’s Law of Cooling

dT

dt
(t) = K [T (t)− A] .

where T (t) is the temperature of the object at time t, A is the temperature of its
surroundings, and K is a constant of proportionality.

• This mathematical model of temperature change works well when studying a small
object in a large, fixed temperature, environment. For example, a hot cup of coffee
in a large room.

At any time there are three possibilities: base on these three situations we want to
check that if K is positive, negative.

1. If T (t) > A, that is, if the body is warmer than its surroundings, we would expect
heat to flow from the body into its surroundings and so we would expect the body
to cool off so that dT

dt
< 0. For this expectation since T (A)−A > 0 and dT

dt
< 0 we

need to have K < 0.

2. If T (t) < A, that is, the body is cooler than its surroundings, we would expect heat
to flow from the surroundings into the body and so we would expect the body to
warm up so that dT

dt
(t) > 0. For this expectation since T (A) − A < 0 and dT

dt
> 0,

we need to have K < 0.

3. Finally if T (t) = A, that is, the body and its environment have the same tempera-
ture, we would not expect any heat to flow between the two and so we would expect
that dT

dt
(t) = 0. This does not impose any condition on K.
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So how to solve the equation

dT

dt
(t) = K [T (t)− A] .

Let write Q(t) = T (t)− A. Then T (t) = Q(t) + A, and the equation becomes

d(Q(t) + A)

dt
= KQ(t)

and so
Q(t)

dt
= KQ(t).

This last equation is similar to the equation in 3.2.1, and so its solution is

Q(t) = ceKt

where c is a constant, and so by Corollary 3.2.2 we have

Q(t) = Q(0)eKt.

By substituting Q(t) = T (t)− A, we have

T (t)− A = (T (0)− A)eKt

thus
T (t) = (T (0)− A)eKt + A.

Newton’s Law of Cooling

Corollary 3.2.5. A differentiable function T (t) obeys the differential equation

dT

dt
(t) = K[T (t)− A]

if and only if
T (t) = [T (0)− A]eKt + A.

Newton’s Law of Cooling

The temperature of a glass of iced tea is initially 5◦. After 5 minutes, the tea has
heated to 10◦ in a room where the air temperature is 30◦.
What is the temperature after 10 minutes?

1. 11

2. 12

3. 13

4. 14
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Example 3.2.6. The temperature of a glass of iced tea is initially 5◦. After 5
minutes, the tea has heated to 10◦ in a room where the air temperature is 30◦.

(a) Determine the temperature as a function of time.

(b) What is the temperature after 10 minutes?

(c) Determine when tea will reach a temperature of 20◦.

Solution. (a) We let T (t) be the temperature of the tea t minutes after it was
removed from the fridge, then the function of the temperature of the tea is

T (t) = [T (0)− A]eKt + A

and since A = 30 and T (0) = 5, the equation is

T (t) = [5− 30]eKt + 30 = −25eKt + 30.

However, still K is unknown and we should find it. Consider that after 5 minutes
the temperature of the tea is 10◦, thus T (5) = 10. That is,

10 = T (5) = −25e5K + 30⇒ −20 = −25e5K ⇒ 4/5 = e5K

⇒ 5K = ln 4/5⇒ K =
ln 4/5

5
.

Therefore the temperature at time t is

T (t) = −25e
ln 4/5

5
t + 30.

(b) The temperature after 10 minutes is

T (10) = −25e
ln 4/5

5
10 + 30 =

−25e2 ln 4/5 + 30 = −25eln(4/5)
2

+ 30 = −25× (4/5)2 + 30 = 14

(c) The time that T (t) = 20, should satisfies

T (t) = −25e
ln 4/5

5
t + 30 = 20.

Thus

−10 = −25e
ln 4/5

5
t ⇒ 2/5 = e

ln 4/5
5

t ⇒ 2/5 = (4/5)(1/5)t ⇒ t = 20.5

to 1 decimal place.
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Example 3.2.7. A dead body is discovered at 3:45pm in a room where the temper-
ature is 20◦C. At that time the temperature of the body is 27◦C. Two hours later, at
5:45pm, the temperature of the body is 25.3◦C. What was the time of death? Note
that the normal (adult human) body temperature is 37◦.

Solution. (a) We will assume that the body’s temperature obeys Newton’s law of
cooling.

• Denote by T (t) the temperature of the body at time t, with t = 0 corresponding
to 3 : 45pm. We want to find the time of death td. We can find the following
data in the statement of the question

– the ambient temperature is 20◦.

– the temperature of the body when discovered: T (0) = 27

– the temperature of the body two hours later: T(2)=25.3

– the temperature at the time of death: T (td) = 37.

• by the Newton’s law of cooling is

T (t) = [T (0)− A]eKt + A = [27− 20]eKT + 20 = 20 + 7eKt.

Consider that T (2) = 20 + 7e2K = 25.3, thus

5.3 = 7e2K ⇒ 2K = ln 5.3⇒ K =
ln(5.3/7)

2
= −0.139.

We also have that T (td) = 37, therefore,

20 + 7e−0.139td = 37.

Solving the equation, we get

7e−0.139td = 17⇒ e−0.139td = 17/7⇒ 0.139td

= ln(17/7)⇒ td =
ln(17/7)

−0.139
= −6.38.

Since 6.38 hr is 6 hours and 22 minutes and 48 second, the time of death is
3:45 minus 6 hours and 22 minutes and 48 seconds which is 9:22:12.
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Example 3.2.8. A glass of room-temperature water is carried out onto a balcony
from an apartment where the temperature is 22◦C. After one minute the water
has temperature 26◦C and after two minutes it has temperature 28◦C. What is the
outdoor temperature?

Solution. Let T (t) be the temperature of the glass of water at time t. We have the
following information from the statement of the problem

• The temperature of the water at the beginning is the same as the temperature
of the room which is 22, thus T (0) = 22.

• T (1) = 26

• T (2) = 28

• let A be the ambient temperature, and we want to find A.

Consider that the temperature of the glass of water satisfies the Newton’s law of
cooling, so

T (t) = [T (0)− A]eKt + A

where T (0) = 22. We have

T (1) = 26 = [22−A]eK+A T (2) = 28 = [22−A]e2K+A = [22−A](eK)2+A

Therefore, from the former equation, we have

26− A = (22− A)eK ⇒ eK =
26− A
22− A

.

Therefore, from the latter equation and knowing that eK = 26−A
22−A , we have

28 = (22− A)(
26− A
22− A

)2 + A.

Therefore,
28− A
22− A

=

(
26− A
22− A

)2

Multiplying both sides by (22− A)2,

(28− A)(22− A) = (26− A)2 ⇒ 616− 50A+ A2 = A2 − 52A+ 676

consequently, 60 = 2A, and so A = 30.
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3.2.3 Population Growth

Suppose that we wish to predict the size P (t) of a population as a function of
the time t. So suppose that in average each couple produces β offspring (for some
constant β) and then dies. Then over the course of one generation since we have
P (t)/2 couples and each have produced β offspring, thus the population of the
children of one generation is

β
P (t)

2
.

Let tg be the life span of one generation, then

P (t+ tg) = β
P (t)

2
= P (t) + β

P (t)

2
− P (t).

Therefore,

P (t+ tg)− P (t) = β
P (t)

2
− P (t)

and so dividing both sides by tg, we have

P (t+ tg)− P (t)

tg
=

1

tg

(
β

2
P (t)− P (t)

)
=

1

tg

(
β

2
− 1

)
P (t)

Let 1
tg

(
β
2
− 1
)

= b, then

P (t+ tg)− P (t)

tg
= bP (t).

Approximately, we have
dP

dt
= bP (t).

Moreover, same as the model for carbon dating we can write

P (t) = P (0)ebt.

Therefore we have the following model for population growth.

Malthusian growth model

The model for the population growth is

dP

dt
= bP (t)

and P (t) satisfies the above equation if and only if

P (t) = P (0)ebt.
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Example 3.2.9. In 1927 the population of the world was about 2 billion. In 1974
it was about 4 billion. Estimate when it reached 6 bilion. What will the population
of the world be in 2100, assuming the Malthusian growth model?

Solution. Let P (t) be the world’s population t years after 1927. Note that 1974
corresponded to t = 1974− 27 = 47.

• the model that we have for the population is P (t) = P (0)ebt

• P (0) = 2 and P (47) = 4 (1974− 1927 = 74).

• we want to find P (173) since 2100− 1927 = 173.

The model becomes
P (t) = 2ebt

and
P (47) = 4 = 2e47b.

thus

2 = e47b ⇒ ln 2 = 47b⇒ 47 =
ln 2

b
⇒ b =

ln 2

47
.

Consequently the model is

P (t) = 2e
ln 2
47
t

• To find out when the population reaches 6 billion, we should find t when P (t) =

2e
ln 2
47
t = 6. This gives

e
ln 2
47
t = 3⇒ ln 2

47
t = ln 3⇒ 47× ln 3

ln 2
= 74.5

So the time that the population is 6 billion is 1927 + 74.5 = 2010.5.
• Also

P (173) = 2e
ln 2
47

173 billion

3.3 Related rates

This is section 3.2 of the textbook

Volume of a sphere

Remember that the volume of a sphere with radius r is

V =
4

3
πr3.
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Example 3.3.1. A spherical balloon is being inflated at a rate of 13cm3/sec. How
fast is the radius changing when the ballon has radius 15cm?

Solution. The information that we can get from the statement of the problem
are

- the balloon is spherical and so its volume is

V =
4

3
πr(t)3.

- dV
dt

= 13

- we want to find the rate of change of the radius dr
dt

when r = 15.
We have that

dV

dt
= 13 = 4π

dr

dt
r(t)2

Since we want to compute dr
dt

when r = 15, so by plugging in the above formula we
have

13 = 4π
dr

dt
152.

Then
dr

dt
=

13

4π × 152
.
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Example 3.3.2. Consider a helium balloon rising vertically from a fixed point
200m away from you. You are trying to work out how fast it is rising. You observe
that when it is at an angle of π/4 its angle is changing by 0.05 radians per second.

Solution.

Denote the angle to be θ (in radians), the height of the balloon (in m) by h and
time (in second) by t. The trigonometry tells us

h = 200. tan θ

and so
dh

dθ
= 200. sec2(θ)

dθ

dt

We have also that dθ
dt

= 0.05 when θ = 0.05. Therefore,

dh

dθ
= 200. sec2(π/4)× 0.05 = 200× 0.05×

√
2
2

= 20m/s.
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Example 3.3.3. A 5 m ladder is leaning against a wall. The floor is quite slippery
and the base of the latter slides out from the wall at a rate of 1m/s. How fast is
the top of the ladder sliding down the wall when the base of the ladder is 3m from
the wall.

Solution.

Consider that the length of the ladder is 5, and so

x2 + y2 = 25.

As in the statement the base of the latter sides out form the wall at a rate of 1m/s,
thus dx

dt
= 1m/s. Now we want to see how fast (dy

dt
) is the top of the latter sliding

down the wall when the base of the ladder is 3m from the wall (x = 3). We need
to find y when x = 3, since we have

x2 + y2 = 25

we have
32 + y2 = 25⇒ y = 4.

Also,

2x
dx

dt
+ 2y

dy

dt
= 0⇒ 2× 3× 1 = −2× 4× dy

dt
= 0⇒ dy

dt
= −4

3
.

Related Rates

A ball is dropped from a height of 49m above level ground. The height of the ball
at time t is h(t) = 49 − 4.9t2m. A light, which is also 49m above the ground, is
10m to the left of the ball’s original position. As the ball descends, the shadow
of the ball caused by the light moves across the ground. How fast is the shadow
moving one second after the ball is dropped?

1. -100 2. -200 3. 100 4. 200
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Example 3.3.4. A ball is dropped from a height of 49m above level ground. The
height of the ball at time t is h(t) = 49− 4.9t2m. A light, which is also 49m above
the ground, is 10m to the left of the ball’s original position. As the ball descends,
the shadow of the ball caused by the light moves across the ground. How fast is the
shadow moving one second after the ball is dropped?

Solution. Let s(t) be the distance from the shadow to the point on the ground
directly underneath the ball. By similar triangles we have

4.9t2

10
=

49− 4.9t2

s(t)
.

Therefore,

s(t) =
10(49− 4.9t2)

4.9t2

and so

s(t) =
100

t2
− 10.

We have

s′(t) = −2
100

t3
.

Consequently, s′(1) = −200m/sec.
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3.4 Approximation functions near specific points-

Tylor Polynomial

Consider the following figure.

This figure shows that the curve y = x and y = sin(x) are almost the same when x is
close to 0. Hence if we want the value of sin(1/10) we just use this approximation y = x
to get

sin(1/10) ≈ 1/10.

Approximating function

Given a function f(x) that we wish to approximate close to some point x = a, and
we need to find another function F (x) (called approximating function) that

• is simple and easy to compute

• is a good approximation to f(x) for x values close to a.

• Further, we need to be able to estimate the error |f(x)− F (x)|.
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3.4.1 First Approximation-Linear Approximation

Linear approximation

Given a function f(x) we want to have the approximating function to be a linear
function that is F (x) = A+Bx for some constants A and B.

So to approximate f(x) we find F (x) = f(a) + f ′(a)(x− a).

f(x) ≈ f(a) + f ′(a)(x− a)

If we want to approximate f(b), how do we find a? the number a is a number
such that

• it is close to b, and

• we can compute f(a) and f ′(a).

Remark. Note that F (a) = f(a) and F ′(a) = f ′(a).

Example 3.4.1. Use the linear approximation to estimate e0.1.

Solution. Let f(x) = ex. We want to have a linear approximation of e0.1. Let
a = 0. Then

f(0) = 1 f ′(0) = 1

So F (x) = f(a) + f ′(a)(x− a). Therefore,

e0.1 = f(0.1) ≈ f(0) + f ′(0)(0.1− 0) = 1 + 0.1 = 1.01.

Remark. Consider that e0.1 = 1.105170918... and so the linear approximation is
almost correct to 3 digits.
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Example 3.4.2. Use a linear approximation to estimate
√

4.1.

Solution. Let f(x) =
√
x and a = 4. Then

f(4) = 2 f ′(4) =
1

4
.

So

F (x) = f(a) + f ′(a)(x− a) = 2 +
1

4
(x− 4)

And so √
4.1 = f(4.1) ≈ F (4.1) = 2 +

1

4
(4.1− 4) = 2.025

Remark. Consider that
√

4.1 = 2.024845673....

3.4.2 Second approximation–the Quadratic Approximation

We now want our approximation function to be a quadratic function of x, that is, F (x) =
A+Bx+ Cx2. To have a good approximating function we choose A,B, and C so that

• f(a) = F (a)

• f ′(a) = F ′(a)

• f ′′(a) = F ′′(a)

These conditions give us the following equations

F (x) = A+Bx+ Cx2 ⇒ F (a) = A+Ba+ Ca2 = f(a)

F ′(x) = B + 2Cx ⇒ F ′(a) = B + 2Ca = f ′(a)

F ′′(x) = 2C ⇒ F ′(a) = 2C = f ′′(a)

Solving these equation we can write A, B, and C in terms of f(a), f ′(a), and f ′′(a). So
that

C =
1

2
f ′′(a)

B = f ′(a)− af ′′(a)

A = f(a)− a[f ′(a)− af ′′(a)]− 1

2
f ′′(a)a2.

Consider that F (x) = A+Bx+ CX2, substituting A, B, and C, we obtain

Quadratic Approximation

F (x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2.

Therefore,

f(x) ≈ f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2.
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How to estimate f(b) using quadratic approximation:

We first find a such that

• it is close to b, and

• we can compute f(a), f ′(a), and f ′′(a).

Example 3.4.3. Use quadratic approximation to estimate e0.1.

Solution. Set f(x) = ex and a = 0. Then

f(x) = ex f(0) = 1
f ′(x) = ex f ′(0) = 1
f ′′(x) = ex f ′′(0) = 1

Therefore our quadratic approximating function is

F (x) = 1 + (x− 0) +
1

2
(x− 0)2 = 1 + x+

1

2
x2.

And
F (0.1) = 1.105

Recall that e0.1 = 1.105170918..., so the quadratic approximation is quite accurate
with very little effort.
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ää Whirlwind Tour of Summation Notation

Assume that we need the sum of the first 11 squares:

1 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92 + 102 + 112

This becomes tedious. So we often skip the middle few terms and instead we write

1 + 22 + · · ·+ 112.

More precisely we can write the above sum as

11∑
k=1

k2.

Let m ≤ n be integers and let f(x) be a function defined on the integers. Then we
write

n∑
k=m

f(k)

to mean the sum of f(k) for k from m to n:

f(m) + f(m+ 1) + f(m+ 2) + · · ·+ f(n− 1) + f(n)

Similarly we write
n∑

i=m

ai

to mean
am + am+1 + am+2 + · · ·+ an−1 + an

for some set of coefficients {am, . . . , an}.

Example 3.4.4. •

7∑
k=3

1

k2
=

1

32
+

1

42
+

1

52
+

1

62
+

1

72
.

•
7∑

k=3

1

k2
=

7∑
i=3

1

i2
=

7∑
j=3

1

j2
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Factorial

Let n be a positive integer, then n-factorial, denoted n!, is the product

n! = n× (n− 1)× · · · × 3× 2× 1

Furthermore, we use the convention that

0! = 1

The first few factorials are

1! = 1 2! = 2 3! = 6

4! = 24 5! = 120 6! = 720

3.5 Still Better Approximations–Taylor Polynomi-

als

Let go back to linear and quadratic approximations.

•What we did in linear approximation. We start with a function f(x) and we wanted to
approximate this function by a function F (x) = c0 + c1(x− a) such that

F (a) = f(a) F ′(a) = f ′(a).

Then
c0 = f(a) c1 = f ′(a).

And so
F (x) = f(a) + f ′(a)(x− a).

•What we did in quadratic approximation. We start with a function f(x) and we wanted
to approximate this function by a function F (x) = c0 + c1(x− a) + c2(x− a)2 such that

F (a) = f(a) F ′(a) = f ′(a) F ′′(a) = f ′′(a).

Then

c0 = f(a) c1 = f ′(a) c2 =
1

2
f ′′(a).

And so

F (x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2.

•• Taylor Polynomial. We want to approximate f(x) with a polynomial Tn(x) of
degree n of the form

Tn(x) = c0 + c1(x− a) + · · ·+ cn(x− a)n

such that
Tn(a) = f(a), T ′n(a) = f ′(a), · · · , T (n)

n (a) = f (n)(a).
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Note that

Tn(x) = c0 + c1(x− a) + · · ·+ cn(x− a)n ⇒ Tn(a) = c0 = f(a)

T ′n(x) = c1 + 2c2(x− a) + · · ·+ ncn(x− a)n−1 ⇒ T ′n(a) = c1 = f ′(a)

T ′′n (x) = 2c2 + 3× 2c3(x− a) + · · ·+ n(n− 1)cn(x− a)n−2 ⇒ T ′′n (a) = 2c2 = f ′′(a)

T (3)
n (x) = 3×2c3+4×3×2c4(x−a)+ · · ·+n(n−1)cn(x−a)n−2 ⇒ T (3)

n (a) = 6c3 = f (3)(a)

...

T (n)
n (x) = n!cn ⇒ T (n)

n (a) = n!cn

Therefore,

c0 = f(a) c1 = f ′(a) c2 =
1

2!
f ′′(a) c3 =

1

3!
f (3)(a), · · · , cn =

1

n!
f (n)(a).

Since

Tn(x) = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n

we have that

f(x) ≈ Tn(x) =

f(a) + f ′(a)(x− a) +
1

2!
f ′′(a)(x− a) +

1

3!
f (3)(a)(x− a)3 + · · ·+ 1

n!
f (n)(a)(x− a)n

Taylor Polynomial

Let a be a constant and let n be a non-negative integer. The nth degree Taylor
polynomial for f(x) about x = a is

Tn(x) = f(a)+f ′(a)(x−a)+
1

2!
f ′′(a)(x−a)2+

1

3!
f (3)(a)(x−a)3+· · ·+ 1

n!
f (n)(a)(x−a)n

Tn(x) =
n∑
k=0

1

k!
f (k)(a)(x− a)k

The special case a = 0 is called a Maclaurin polynomial.



114 CHAPTER 3. APPLICATION OF DERIVATIVES

Example 3.5.1. The first few Maclaurian polynomial of f(x) = ex are

T0(x) = 1 T1(x) = 1 + x T2(x) = 1 + x+
x2

2
.

Moreover, since

f (n)(x) = ex f (n)(x) = 1 n = 0, 1, 2, . . .

we have

Tn(x) =
n∑
k=0

f (k)(0)
xk

k!
=

n∑
k=0

1

k!
xk.

Consider that

T7(x) = 1 + x+
x2

2
+
x3

6
+
x4

4!
+
x5

5!
+
x6

6!
+
x7

7!
.

So

e1 ≈ T7(1) = 1 + 1 +
1

2
+

1

6
+

1

4!
+

1

5!
+

1

6!
+

1

7!
= 2.718253968...

The true value of e is 2.718281828... so the approximation has an error of about
3× 10−5.

Example 3.5.2. Find the first Taylor polynomial of f(x) = x3/2 about x = 9.

Solution. To find the first Taylor polynomial we compute the following.

f(x) = x3/2 f(9) = 27

f ′(x) =
3

2
x1/2 f ′(9) =

9

2

Therefore,

T1(x) = f(a) + f ′(a)(x− a) = 3 +
9

2
(x− 9).
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Example 3.5.3. Compute the 5th Taylor polynomial for lnx about x = 1. (Note
that ln is not defined at x = 0 so we can compute Maclaurin series.)

Solution. By the formula for the Taylor polynomial we should compute the follow-
ing.

f(x) = ln x f(1) = ln 1 = 0

f ′(x) =
1

x
f ′(1) =

1

1
= 1

f ′′(x) =
−1

x2
f ′′(1) = −1

f (3) =
2

x3
f (3)(1) = 2

f (4)(x) =
−6

x4
f (4)(1) = −6

f (5)(x) =
24

x5
f (5)(1) = 24

Therefore,

T5(x) = 0+1.(x−1)+
1

2
.(−1).(x−1)2+

1

6
.2.(x−1)3+

1

24
.(−6).(x−1)4+

1

120
.24.(x−1)5 =

(x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − 1

4
(x− 1)4 +

1

5
(x− 1)5.

With a little work one can show that

Tn(x) =
n∑
k=1

(−1)k+1

k
(x− 1)k.
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Example 3.5.4. Find the 4th degree Maclaurin polynomial for cos(x)

Solution. Since we want to find Maclaurin polynomial, we have a = 0. Also,

f(x) = cos(x) f(0) = 1

f ′(x) = − sin(x) f ′(0) = 0

f ′′(x) = − cos(x) f ′′(0) = −1

f ′′′(x) = sin(x) f ′′′(0) = 0

f (4)(x) = cos(x) f (4)(0) = 1

Substituting these in the equation for the Maclaurin polynomial gives

T4(x) = 1 + 1.(0).x+
1

2
.(−1)x2 +

1

6
.0.x3 +

1

24
.(1).x4

1− x2

2
+
x4

24
.

Moreover, we have

f (4)(x) = cos(x) f (4)(0) = 1

f (5)(x) = − sin(x) f (5)(0) = 0

f (6)(x) = − cos(x) f (6)(0) = −1

f (7)(x) = sin(x) f (7)(0) = 0

f (8)(x) = cos(x) f (8)(0) = 1

Thus the 8th degree Maclaurin series is

T8(x) = 1− x2

2
+
x4

24
− x6

6!
+
x8

8!

Computing 2nth degree Maclaurin polynomial, we have

T2n(x) =
n∑
k=0

(−1)k

(2k!)
.x2k.
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Example 3.5.5. Find the 5th degree Maclaurin polynomial for sin(x)

Solution. Let g(x) = sin(x). We have

g(0) = 0, g′(0) = 1, g′′(0) = 0, g′′′(0) = −1, g(4)(0) = 0, g(5) = 1.

Hence

T5(x) = x− x3

3!
+
x5

5!

The (2n+ 1)th Maclaurin polynomial for sin(x) is

T2n+1(x) =
n∑
k=0

(−1)k

(2k + 1)!
x2k+1

Remark. If |x| ≤ 1 radians, then the magnitudes of the successive terms in the
Taylor polynomial for sin(x) are bounded by

|x| ≤ 1
1

3!
|x|3 ≤ 1/6

1

5!
|x|5 ≤ 1

120
≈ 0.0083

1

7!
|x|7 ≤ 1

7!
≈ 0.0002

1

9!
|x|9 ≤ 1

9!
≈ 0.000003

1

11!
|x|11 ≤ 1

11!
≈ 0.000000025

From these inequalities, it certainly looks like, for x not too large, even relatively
low degree Taylor polynomials give very good approximations.

3.6 The Error in the Taylor Polynomial Approxima-

tions

When we approximate a function f(x) by F (x), the error is

error = R(x) = f(x)− F (x)

That is the difference between the function f(x) and approximating function F (x).
It is not realistic to exactly find R(x) since then f(x) = F (x) + R(x) so we would
like to find some relatively small M such that |R(x)| = |f(x)− F (x)| ≤M .

ä We want to approximate the function f(x) by the 0th Taylor polynomial about
x = a i.e., f(a).

f(x) ≈ T0(x) = f(a).

Consider that
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f(x)

= f(x) + f(a)− f(a)

= f(a) + (f(x)− f(a))
(x− a)

(x− a)

= f(a) +
f(x)− f(a)

x− a
(x− a)

(3.6.1)

This function is sometimes positive and sometimes negative, so by MVT there is c strictly
between x and a such that

f ′(c) =
f(x)− f(a)

x− a
.

Therefore,

f(x) = T0(x) + f ′(c)(x− a)

or equivalently,

The error in constant approximation

R0(x) = f(x)− T0(x) = f ′(c)(x− a) for some c strictly between a and x

The error in linear approximation

R1(x) = f(x)− T1(x) =
1

2
f ′′(c)(x− a)2 for some c strictly between a and x

Lagrange remainder theorem: The error when approximating function
is Tn(x)

Rn(x) = f(x)−Tn(x) =
1

(n+ 1)!
f (n+1)(c)(x−a)n+1 for some c strictly between a and x
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Remark

Consider that
f(x) = Rn(x) + Tn(x)

Therefore,

1. if 0 ≤ Rn(x) ≤ E, then

Tn(x) ≤ f(x) ≤ Tn(x) + E.

2. if E ≤ Rn(x) ≤ 0, then

Tn(x) + E ≤ f(x) ≤ Tn(x).

Accurate to D decimal places

Generally we say that our estimate is “accurate to D decimal places” when

|error| < 0.5× 10−D.
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Example 3.6.1. How well does the third Taylor polynomial for ln(x) about x =
1 estimate ln(2). (This asks find M such that |R3(2)| < M and then say the
approximation is accurate to D decimal points).

Solution. We have
f(x) = ln(x) f(1) = 0

f ′(x) =
1

x
f ′(1) = 1

f ′′(x) =
−1

x2
f ′′(1) = −1

f (3)(x) =
2

x3
f ′′′(1) = 2

f (4)(x) =
−6

x4

T3(x) = 0 + (x− 1)− 1

2
(x− 1)2 +

2

3!
(x− 1)3.

So

T (2) = 1− 1

2
+

2

3!
=

5

6
.

By Lagrange remainder theorem we have

R3(2) =
1

4!
f (4)(c)(x− 1)4 =

1

4!
f (4)(c) =

1

4!

−6

c4

for some 1 < c < 2. When 1 < c < 2, we have that |−6
c4
| ≤ 6. Therefore,

|R3(2)| = | 1
4!

−6

c4
| ≤ 1

4!
6 =

1

4
.

So,

|R3(2)| ≤ 1

4
= 0.25 < 0.5× 10−0

so it is accurate to 0 decimal points.
Moreover,

|f(2)− T3(2)| = |R3(2)| ≤ 1

4
⇒ |f(2)− 5

6
| ≤ 1

4
⇒ 5

6
− 1

4
≤ ln(2) ≤ 5

6
+

1

4
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Example 3.6.2. Let f(x) = x3/2.

1. Estimate f(9.1) using the first Taylor polynomial about a = 9 as the approx-
imating function.

2. Using Lagrange theorem find E (as small as possible) such that R1(x) ≤ E.

3. Show that
27.45 ≤ (9.1)3/2 ≤ 27.45 + 0.00125

Solution. (1) To find the first Taylor polynomial we compute the following.

f(x) = x3/2 f(9) = 27

f ′(x) =
3

2
x1/2 f ′(9) =

9

2

f ′′(x) =
3

4
√
x
.

Therefore,

T1(x) = f(a) + f ′(a)(x− a) = 3 +
9

2
(x− 9).

So

f(9.1) ≈ T1(9.1) = 3 +
9

2
(9.1− 9) = 27 +

9

2
× 0.1 = 27.45.

(2) Using Lagrange theorem we have

R1(x) =
1

2
f ′′(c)(x− a)2 ⇒ R1(9.1) =

1

2
f ′′(c)(9.1− 9)2

for some c strictly between 9.1 and 9. We have that

f ′′(x) =
3

4

1√
x

⇒ f ′′(c) =
3

4

1√
c
.

Since 9 < c < 9.1 we have

f ′′(c) =
3

4

1√
c
≤ 3

4

1√
9

=
1

4
.

Therefore,

R1(9.1) =
1

2
f ′′(c)(9.1− 9)2 ≤ 1

2

1

4
(0.1)2 =

1

800
= 0.00125.

Thus,
E = 0.00125.

(3) Since R1(9.1) = 1
2
f ′′(c)(9.1− 9)2 > 0 is positive, by the above Remark, we have

T1(9.1) ≤ f(9.1) ≤ T1(9.1) + E ⇒ 27.45 ≤ (9.1)3/2 ≤ 27.45 + 0.00125

(actually they differ by 0.001247695). Notice that the first 2 decimal places are
correct.
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3.7 Optimization (section 3.5 in CLP)

3.7.1 Maximum and minimum values (section 3.5.1 in CLP)

Global maximum and global minimum (CLP 3.5.3)

Let f be a function with domain D.

• We say that f has a global maximum at a point c if f(c) ≥ f(x) for all x ∈ D.
The value f(c) is called the maximum value of f .

• Similarly we say that f has a global minimum at a point c if f(c) ≤ f(x) for
all x ∈ D. And the value f(c) is called the minimum value of f .

• The maximum and minimum values of f are called extreme values of f .

• Global max/min are sometimes called “absolute” max/min.

Local maximum and local minimum (CLP 3.5.3)

A function f has a local maximum at c if there are elements x in domain close to
c form the left and right and f(c) ≥ f(x) for all x “close to” c. Similarly, f has a
local minimum at c if f(c) ≤ f(x) for x near c.

Theorem: continuity and global max/min (CLP 3.5.10)

If f(x) is continuous on the closed interval [a, b] then f has an global maximum
value f(c) and a global minimum value f(d) for some c, d ∈ [a, b].
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Definition: Critical and singular points (CLP 3.5.5)

Let f(x) be a function and let c be a number in its domain.

• If f ′(c) exists and is equal to zero, then x = c is a critical point of the function.

• If f ′(c) does not exist then x = c is a singular point of the function.

Caveat. Some books lump both these cases into “critical point”.

Fermat’s Theorem

Let f have a local maximum or minimum at x = c. If f ′(c) exists, the f ′(x) = 0.

So Question: If f ′(c) = 0 for some c, then c is a local maximum or minimum?!
No! because

Example 3.7.1. f(x) = x3, then f ′(x) = 3x2 is zero if x = 0, but x = 0 is not a
local maximum or minimum.
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3.8 Finding global maxima and minima (Section

3.5.2 CLP)

There is a simple method to find global max/min.

Theorem 3.8.1. (CLP 3.5.11) If f(x) has a global maximum or a global minimum
on the closed interval [a, b] at the point x = c, then

• f ′(c) = 0–the point is a critical point

• f ′(c) does not exist–the point is a singular point

• c = a or c = b–one of the end points of the interval.

Corollary 3.8.2. (CLP-3.5.12–closed interval method) To find the global maximum
and minimum of a function f on a closed interval [a, b]:

1. Find all the critical and singular points in (a, b) and the values of f at those
points.

2. Find the values of f at the endpoints of the interval: f(a) and f(b).

3. The largest of the above f -values is the global max, and the smallest is the
global min.

Example 3.8.3. Find the global max/min values of f(x) = x5/3 − x2/3 for −1 ≤
x ≤ 1.

Solution. The function is differentiable on the interval, so by the closed interval
method we need to find,

• critical and singular points:

f ′(x) =
5

3
x2/3 − 2

3
x−1/3 = x−1/3(

5

3
x− 2

3
).

When f ′(x) = 0, we have x = 2/5. And f ′(x) does not exists when x = 0.
Thus 0, 2/5 are the critical and singular points.

The values at critical points:

f(0) = 0 f(2/5) = (2/5)5/3 − (2/5)2/3

The values at the end points f(−1) = −2 and f(1) = 0. Therefore the global
maximum is 0 and the global minimum is −2.
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3.9 The mean value theorem (Section 2.13 CLP)

Rolle’s Theorem

Theorem 3.9.1. (CLP 2.13.1–Rolle’s theorem) Let f be a function such that

• f is continuous on [a, b],

• f is differentiable on (a, b),

• f(a) = f(b).

Then there is a point c between a and b so that f ′(c) = 0.

Example 3.9.2. Consider the function f(x) = sin(x) − cos(x) on [0, 3π
2

]. We
have that this function is continuous on [0, 3π

2
] and differentiable on (0, 3π

2
), and

f(0) = −1 and f(3π
2

) = −1, therefore, there is a point c ∈ (0, 3π
2

) so that f ′(c) = 0.
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The Mean Value Theorem

Theorem 3.9.3. (CLP 2.13.4–The mean value theorem) Let f be a function such
that

• f is continuous on [a, b], and

• f is differentiable on (a, b).

Then there is a point c between a and b so that

f ′(c) =
f(b)− f(a)

b− a

or equivalently,
f(b)− f(a) = (b− a)f ′(c).

Example 3.9.4. Consider f(x) = 3x2 − 4x + 2 on [−1, 1]. This function is con-
tinuous on [−1, 1] and also it is differentiable on (−1, 1). So by MVT there is

c ∈ (−1, 1) such that f ′(c) = f(1)−f(−1)
1−(−1) = 1−9

2
= −4.

Example 3.9.5. Show that f(x) = 2x− 1− sin(x) has only a single zero.

Solution. Since 2x− 1− sin(x) is continuous and differentiable in its domain, we
can use both IVT and MVT. Consider that f(0) = −1 and f(π) = 2π − 1 > 0,
therefore, by IVT we have there is c ∈ (−1, 1) such that f(c) = 0. However, IVT
doesn’t state that this zero is the only one, that is where we use Rolle’s theorem.
If the function f(x) is zero for distinct numbers a and b, that is f(a) = 0 and
f(b) = 0, then by Rolle’s theorem we have there must exists d ∈ (a, b) such that
f ′(d) = 0, but f ′(x) = 2− cos(x) which is never zero.

Exercise: Show that x− ex has only one zero.
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Example 3.9.6. You are driving along a straight road in a car that can go at most
80km/h. How far can you go in 2 hours.

Solution. We have that

s(0) = 0 s(2) = q − 80 ≤ s′(t) ≤ 80

for any time t between 0 and 2. By MVT, there is a c between 0 and 2 such that

s′(c) =
q − 0

2
=
q

2
.

Therefore,

−80 ≤ q

2
≤ 80

we must have
−160 ≤ s(2) ≤ 160.

Corollary 3.9.7. (CLP 2.13.11) If f ′(x) = 0 for all x ∈ (a, b), then f is constant
on (a, b).

Corollary 3.9.8. (CLP 2.13.12) If f ′(x) = g′(x) for all x ∈ (a, b) then f − g is a
constant on (a, b). That is a number K such that f(x)− g(x) = K for x ∈ (a, b).

Example 3.9.9. Show that arcsin(x) + arccos(x) = π/2 for all −1 < x < 1.

Solution. Let f(x) = arcsin(x) + arccos(x). Then

f ′(x) =
1√

1− x2
+

−1√
1− x2

= 0.

By the above corollary we have that f(x) is constant. Since

arcsin(0) + arccos(0) = π/2,

we have that f(x) = π/2 for −1 < x < 1.



128 CHAPTER 3. APPLICATION OF DERIVATIVES

Corollary 3.9.10. • If f ′(x) > 0 on an interval, then f is increasing on that
interval.

• If f ′(x) < 0 on an interval, then f is decreasing on that interval.

3.10 Graph Sketching (CLP 3.6)

Consider that the closed interval method is to find the local max and local min when we
are investigating a function f on a closed interval [a,b], but what if we want to check the
at which point we have local max/min on R. The following theorem is helpful to see if a
critical or singular point of a continuous function is a local max/min, consider that when
we have a function that is continuous global max/min are also local.

Theorem 3.10.1. Let f be a continuous function and c be a singular or critical
point. Then

• If f ′ changes from positive to negative at c, then f has a local max at c.

• If f ′ changes from negative to positive at c, then f has a local min at c.

• If f ′ does not change sign at c, then c is not a local max or min.
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Example 3.10.2. Find at which points f(x) = x2/3(x − 1) is increasing and de-
creasing and then find local max(s) and min(s).

Solution. Consider that this function is continuous. We have

f ′(x) =
5x− 2

3x1/3
.

So x = 0 is the only singular point and also x = 2/5 is the only critical point.

(−∞, 0) x = 0 (0, 2/5) x = 2/5 (2/5,∞)
f ′(x) > 0 f ′doesn’t exist f ′(x) < 0 f ′(x) = 0 f ′(x) > 0
Increasing (local max) decreasing (localmin) increasing

• Thus by the above theorem x = 0 is a local max and x = 2/5 is local min.

Concavity

Definition (CLP 3.6.3)

• If f lies above all its tangents on an interval I it is concave upward (CU) on
I.

• If f lies below all its tangents on an interval I it is concave downward (CD)
on I.

• Furthermore, an inflection point P on the graph of f is a point where f is
continuous and changes its concavity form CU → CD or CD → CU .
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Theorem 3.10.3. • If f ′′(x) > 0 on I, then it is CU on I.

• If f ′′(x) < 0, then it is CD on I.

The concavity can also tell us if a critical point is a local max or a local min.

Theorem 3.10.4. (Second derivative test) Suppose f ′′ is continuous near c and
x = c is a critical point (i.e. f ′(c) = 0 ), then

• if f ′′(x) > 0, then f has a local minimum at c

• if f ′′(x) < 0, then f has a local maximum at c.

Remark

Let f(x) and f ′(x) be a differentiable functions on their domains. Then

• If f(x) has two zeros at a and b, that is f(a) = 0 and f(b) = 0, then by MVT
we must have at least a point c ∈ (a, b) such that f ′(c) = 0.

• If f(x) has three zeroes at a, b, and c (a < b < c), that is f(a) = 0, f(b) = 0,
and f(c) = 0, then there are at least one d ∈ (a, b) such that f ′′(d) = 0 and
at least one e ∈ (b, c) such that f ′(e) = 0. Consider that then f ′(d) = f ′(e)
so again by Rolle’s Theorem we have f ′′(z) = 0 for some z ∈ (d, e).
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Example 3.10.5. Consider the graph of x2 − 5.

This function has two zeros and also the derivative is zero at one point, and also
has no inflection points.

Consider the graph of x3 − 3x− 1.

This function has three zeros and also the derivative is zero at two points, and it
has one inflection point.



132 CHAPTER 3. APPLICATION OF DERIVATIVES

Example 3.10.6. Show that

2x2 − 3 + sin(x) + cos(x) = 0

has only two zeros.

Solution. Let f(x) = 2x2−3+sin(x)+cos(x). Then f(0) = −2 and f(π) = 2π2−
3+sin(π)+cos(π) = 2π2−4 > 0. Therefore, by IVT theorem there is a zero between
(0, π). Also, f(−π) = 2(−π)2 − 3 + sin(−π) + cos(−π) = 2π2 − 4 > 0. Therefore,
f has at least one zero between (−π, 0) too. So far we have shown that f(x) has at
least two zeros, but we must show that it has exactly two zeros. If it has three zeros,
by the above remark since f ′ = 4x+ cos(x)− sin(x) is differentiable, we must have
that for some z in the domain of f , f ′′(z) = 0; however, f ′′(x) = 4−sin(x)−cos(x)
and it is not equal to zero on any point.

Symmetries.

• f(x) is even when f(−x) = f(x) (symmetric with respect to x = 0) for example
f(x) = x2.

• f(x) is odd when f(−x) = −f(x) (symmetric with respect to the origin) for example
f(x) = x3 + x.

• f(x) is periodic when for some p, f(x) = f(x + p) for all x in the domain. For
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example, sin(x).

Check-List

• Sketching a graph. A good check-list for sketching a graph.

• Domain

• Intercepts

• Symmetry

• Asymptotes

• Singular and critical points; Increasing/Decreasing

• Concavity and inflection points



134 CHAPTER 3. APPLICATION OF DERIVATIVES

Example 3.10.7. Sketch the graph of

f(x) = x4 − 4x3.

Solution. • Domain: This function is defined everywhere, so the domain is
all real numbers.

• Intercepts: Consider that when x = 0, then f(x) = 0, so (0, 0) is one of
the intercepts; when f(x) = 0, then x4 − 4x3 = 0, and so x3(x − 4) = 0, so
x = 0, 4. Therefore, the graph meets the x axis at (0, 0) and (4, 0).

• Symmetry. Consider that f(−x) is not equal to f(x) or −f(x), so the
function is not odd and not even.

• Asymptotes. When x→∞, then f(x)→∞. And there is not a number a
such that limx→a± = ±∞, thus this function has no vertical and no horizontal
asymptotes.

• Singular and critical points; Increasing/Decreasing. Consider that

f ′(x) = 4x3 − 12x2.

Set f ′(x) = 0. Then 4x3− 12x2 = 0⇒ 4x2(x− 3) = 0 and so f ′(x) = 0 when
x = 0, 3.

(−∞, 0) x = 0 (0, 3) x = 3 (3,∞)
f ′(x) < 0 f ′(x) = 0 f ′(x) < 0 f ′(x) = 0 f ′(x) > 0
Decreasing Critical Decreasing Critical Increasing

Therefore, by Theorem 3.10.1, the function f(x) has a local min at x = 3 and
that is (3,−27).

• Concavity and inflection points. Consider that

f ′′(x) = 12x2 − 24x = 12x(x− 2)

so f ′′(x) = 0 when x = 0, 2. We have

(−∞, 0) x = 0 (0, 2) x = 2 (2,∞)
f ′′(x) > 0 f ′′(x) = 0 f ′(x) < 0 f ′(x) = 0 f ′(x) > 0

CU Inflection CD Inflection CU

So by the definition of the inflection points, we have the function has two
inflection points at x = 0, 2 and they are (0, 0) and (2,−16).
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Example 3.10.8. Sketch the graph of

f(x) =
x3

1− x2
.

Solution.

• Domain: This function is not defined when 1 − x2 = 0 so the domain is all real
numbers except x = ±1.

• Intercepts: f(0) = 0 and f(x) = 0 when x = 0 so the only intercept happens at
(0, 0).

• Symmetry: Consider that f(−x) = −f(x) so the function is odd.

• Asymptotes—

– We expect to have vertical asymptotes when x = ±1. We can work out
limx→1− f(x) = −∞ and limx→1+ =∞; limx→−1− f(x) =∞ and limx→−1+ =
−∞.

– No horizontal asymptotes since when x→∞, then f(x)→∞.
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• Singular and Critical points; Increasing/Decreasing: Consider that

f ′(x) =
3x2(1− x2)− (−2x)(x3)

(1− x2)2
=
x2(3− x2)
(1− x2)2

.

Therefore, the singular points are x = ±1 and the critical points are 0,±
√

3.

(−∞,−
√
3) x =

√
−3 (−

√
3,−1) x = −1 (−1, 0) x = 0 (0, 1) x = 1 (1,

√
3)

√
3 (

√
3,∞)

f ′(x) < 0 f ′(x) = 0 f ′(x) > 0 NE f ′(x) > 0 f ′(x) = 0 f ′(x) > 0 NE f ′(x) > 0 f ′(x) = 0 f ′(x) < 0
D lmin I S I C I S I lmax D

(I=Increasing; D=Decreasing; C=Critical; S=Singular; NE=Not Exists; lmax=
local max; lmin: local min)

• Concavity and Inflection points. Consider that

f ′′(x) =
2x(3 + x2)

(1− x2)3
.

Consider that f ′′(x) = 0 when x = 0,±
√

3 and it is not defined at x = ±1. So, by
looking at the following table we have the only inflection point is (0, 0); note that
even f changes the concavity at x = 1 and x = −1 but since it is not defined at
those points, they cannot be inflections.

(−∞,−
√

3)

x = −
√

3

(−
√

3,−1)
x = −1
(−1, 0)
x = 0
(0, 1)
x = 1

(1,
√

3)

x =
√

3

(
√

3,∞)

f ′(x) < 0
f ′(x) = 0
f ′(x) > 0
NE

f ′(x) > 0
f ′(x) = 0
f ′(x) > 0
NE

f ′(x) > 0
f ′(x) = 0
f ′(x) < 0

D
lmin
I
S
I
C
I
S
I

lmax
D

f ′′(x) > 0
f ′′(x) > 0
f ′′(x) > 0
NE

f ′′(x) < 0
f ′′(x) = 0
f ′′(x) > 0
NE

f ′′(x) < 0
f ′′(x) < 0
f ′′(x) < 0

CU
CU
CU
NE
CD

f ′(x) = 0
CU
NE
CD
CD
CD
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Example 3.10.9. Sketch the graph of

f(x) =
x

x2 − 4
.

Solution. • Domain. All real numbers except ±2.

• Intercepts. The only interception is (0, 0).

• Symmetry. The function is odd, so we only need to draw it for x ≥ 0 and
then the rest infer from the fact that the graph is symmetric with respect to
the origin.

• Asymptotes. When

lim
x→2+=+∞

lim
x→2−=−∞

lim
x→−2+=+∞

lim
x→−2−=−∞

Also, limx→±∞ = 0.

• Singular and critical points; Increasing/Decreasing.

f ′(x) =
−(x2 + 4)

(x2 − 4)2
.

No Critical; ±2 singular. Check that it doesn’t have local min and local max.

• Concavity and inflection points.

f ′′(x) =
2x(x2 + 12)

(x2 − 4)3
.

Check that the function has an inflection point at x = 0.
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Exercise

Sketch the graph of

f(x) = 3

√
x2

(x− 6)2
.
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3.11 Indeterminate forms and L’Hôpital’s rule (CLP

3.7)

Let us go back to limits again. We recall that

Theorem 3.11.1. If limx→a f(x) = K and limx→a g(x) = L, then

lim
x→a

f(x)

g(x)
=
K

L
provided L 6= 0.

So,

lim
x→2

x2 − 1

x+ 1
=

3

3
= 1.

But what about this one

lim
x→1

x− 1

x2 − 1
=

0

0
=?????

we realized that we have to simplify first before taking the limit

= lim
x→1

x− 1

(x− 1)(x+ 1)

= lim
x→1

1

x+ 1
=

1

2
.

Also,

lim
x→0+

x

x2
= lim

x→0+

1

x
= +∞.

But what happens when we get something more substantial like

lim
x→0

sin(x)

x
=????

we can solve this one by doing quite a bit of geometry and then we have the limit is

= 1

What can we do with

lim
x→0

cos(x)− 1

x
=

0

0
=??? or lim

x→+∞

log(x)

x
=
∞
∞

=???

We will soon see the L’Hopital’s rule and easily we can find the above limits.

Definition (CLP 3.71 and 3.7.2)

Consider the limit

lim
x→a

f(x)

g(x)
.

• If
lim
x→a

f(x) = lim
x→a

g(x) = 0

then we refer to the limit as an indeterminate form of type 0
0
.

• If
lim
x→a

f(x) = lim
x→a

g(x) = ±∞

then we refer to the limit as an indeterminate form of type ±∞±∞ .
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There are other types of indeterminate forms as well. Some other types are,

0× (±∞) 1∞ 00 ∞0 ∞−∞

(warning: ±∞
0

and 0
±∞ are not in the above list.) If we have any of the above

indeterminate forms, it is more likely that we can change it to a limit that in that
limit we only need to take care of a limit of the form

lim
x→a

f(x)

g(x)
,

and that’s where we can use L’Hôpital’s rule.

Theorem 3.11.2. (CLP 3.7.2—L’Hôpital’s Rule) Let f and g be differentiable
functions and a either be a real number or ±∞. Furthermore, suppose that either

• limx→a f(x) = limx→a g(x) = 0, or

• limx→a f(x) = ± limx→a g(x) = ±∞

then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

provided that limit on the right-hand-side exists or is ±∞.

Indeterminate forms 0
0

and ±∞
±∞ can all be dealt with the following way

Example 3.11.3. Compute

lim
x→0

cos(x)− 1

x
.

Solution. Consider that limx→0 cos(x)− 1 = 0 and limx→0 = 0, thus this is a 0/0
indeterminate form, and since both functions are differentiable, we use l’Hôpital’s
rule. So by l’Hôpital’s rule, and so

lim
x→0

cos(x)− 1

x
= lim

x→0

− sin(x)

1
= 0.
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Example 3.11.4. Indeterminate form 0× (±∞) can all be dealt with the
following way
Compute

lim
x→0+

x ln(x).

Solution. Note that limx→0+ x = 0 and limx→0+ ln(x) = −∞. So we have an
indeterminate of the form 0.(−∞). Consider that

lim
x→0+

x ln(x) = lim
x→0+

ln(x)
1
x

indeterminate form of type −∞/∞

= lim
x→0+

1
x
−1
x2

by L’Hôpital’s rule

= lim
x→0+

−x = 0.

Indeterminate forms 1∞, 00, and ∞0 can all be dealt with the following
way

Example 3.11.5.
lim
x→∞

x
1
x

Solution. Note that limx→∞ x =∞ and limx→∞
1
x

= 0. So we have an indetermi-
nate form of type ∞0. Let

y = lim
x→∞

x
1
x .

Then

ln y = ln( lim
x→∞

x
1
x )

= lim
x→∞

ln(x
1
x ) x

1
x is continuous

= lim
x→∞

1

x
ln(x) = lim

x→∞

ln(x)

x
indeterminate form of type ∞/∞

= lim
x→∞

d
dx

(ln(x))
d
dx
x

= lim
x→∞

1

x
by l’Hôpital’s rule

= 0

Therefore, ln y = 0 and so 1 = y = limx→∞ x
1
x .
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Indeterminate form ∞−∞: you should change it to an indeterminate of
the form 0/0 or ±∞/±∞.

Example 3.11.6. Compute

lim
x→∞

√
x2 + 4x−

√
x2 − 3x.

Solution. Consider that this limit gives an indeterminate form of type ∞ −∞.
We can write

√
x2 + 4x−

√
x2 − 3x = x

√
1 +

4

x
− x
√

1− 3

x
x is positive

= x

(√
1 +

4

x
−
√

1− 3

x

)

=

√
1 + 4

x
−
√

1− 3
x

1
x

Therefore,

lim
x→∞

√
x2 + 4x−

√
x2 − 3x = lim

x→∞

√
1 + 1

x
−
√

1− 3
x

1
x

So we change the limit to a limit that is an indeterminate of type 0/0, and now we
can use L’Hôpital’s rule; and using the rule we have the limit is equal to 7/2.
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Example 3.11.7. Compute

lim
x→∞

ex − e−x

ex + e−x
.

Solution. Consider that this limit gives an indeterminate form of type ∞/∞. Let
see what will happen if we use L’Hôpital’s rule,

lim
x→∞

ex − e−x

ex + e−x
= lim

x→∞

ex + e−x

ex − e−x
indeterminate form of type ∞/∞

using L’Hôpital’s rule again

= lim
x→∞

ex − e−x

ex + e−x
indeterminate form of type ∞/∞

Seems that we are in a loop if we continue using L’Hôpital’s rule; what if we do
some algebra here.

lim
x→∞

ex − e−x

ex + e−x
= lim

x→∞

(
ex

ex

)
1− e−2x

1 + e−2x

= lim
x→∞

1− e−2x

1 + e−2x

= 1

Example 3.11.8. Sometimes you need to use L’Hôpital’s rule more than once.
Consider

lim
x→−∞

x2

e1−x
.

Note that limx→−∞ x
2 = ∞ and limx→−∞ e

1−x = ∞, so we have an indeterminate
form of type ∞/∞. Thus using L’Hôpital’s rule

lim
x→−∞

x2

e1−x
= lim

x→−∞

2x

−e1−x
indeterminate of type −∞/−∞

= lim
x→−∞

2

e1−x
by L’Hôpital’s rule

= 0.
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Example 3.11.9. Compute the limit

lim
x→∞

ln(ln(x))√
x

.

Solution. Consider that

lim
x→∞

ln(ln(x)) =∞ and lim
x→∞

√
x =∞.

So we have a ∞/∞ indeterminate form. We can use l’Hôpital’s rule. Note that

d

dx
ln(ln(x)) =

1

x ln(x)
and

d

dx

√
x =

1

2
√
x
.

Therefore,

lim
x→∞

ln(ln(x)) = lim
x→∞

1
x ln(x)

1
2
√
x

by L’Hôpital

= lim
x→∞

2
√
x

x ln(x)
= lim

x→∞

2√
x ln(x)

= 0

√
x

x
=

1√
x

Example 3.11.10. Compute

lim
x→∞

(
1 +

3

x

)x
.

Solution. Consider that this limit gives an indeterminate form of type 1∞. We
can write

y = lim
x→∞

(
1 +

3

x

)x
ln y = ln

(
lim
x→∞

(
1 +

3

x

)x)
= lim

x→∞
ln

(
1 +

3

x

)x
= lim

x→∞
x ln

(
1 +

3

x

)
= lim

x→∞

ln
(
1 + 3

x

)
1
x

indeterminate form of type 0/0, using L’Hôpital’s rule

= lim
x→∞

−3
x2
. 1
(1+ 3

x
)

−1
x2

d

dx
ln

(
1 +

3

x

)
=
−3

x2
.

1

(1 + 3
x
)
,
d

dx

1

x
=
−1

x2

= lim
x→∞

3

1 + 3
x

= 3



146 CHAPTER 3. APPLICATION OF DERIVATIVES

3.12 Optimization (CLP 3.5)

Many application of mathematics to “real world” problems consists of finding the maxi-
mum and minimum of some function subject to various constraint. For example, minimize
the cost, minimize travel time, maximize efficiency, etc. We will solve some of these ques-
tions by using calculus. Many of this questions are very easy in terms of mathematics;
however, the main obstacle here is translating the problem to calculus. The only way to
be expert in this translation is by practice.

In general to answer this kind of questions, you need to

• Draw a diagram.

• Variables—assign variables to the quantities in the problem.

• Find some relation between the variables.

• Reduce to a function of 1 variable.

• Find the domain, the possible values that can be assigned to the variable.

• Max/Min: find the absolute max/min by using methods that we have studied, for
example “closed interval method.”

Example 3.12.1. You are given a square of cardboard (12cm by 12cm) and you
need to cut out squares from the corners of your sheet so that you may fold it into
a box. How large should these cut-out squares be so as to maximize the volume of
the box.

Solution.

First we draw a picture

(Assign variables.) So we need to maximize the volume of the box with

• width w,

• length l, and

• height h.
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All should be in cm. And we should make volume V in cm3.

(Relation between variables.)We have

• the volume is V = lwh,

• the height is given by the size that we cut out i.e., h,

• consider that the length and width are equal and given by

l = w = 12− 2h.

(Reduce to function of 1 variable.) So the volume is V = h(12− 2h)2.
Therefore, we want to find the maximum of the function V = h(12− 2h)2.

(Find the domain.) Consider that h must not be negative and also

l = w = 12− 2h ≥ 0⇒ 12 ≥ 2h⇒ 6 ≥ h.

Thus, 0 ≤ h ≤ 6.

(Max/Min.) Now since V is continuous we can use closed interval method, that
is finding the critical and singular point, and then the maximum in the interval
0 ≤ h ≤ 6 is the largest value of the function at points 0, 6, and singular and
critical points. Note that

V = h(144− 48h+ 4h2) = 144h− 48h2 + 4h3,

and so
dV

dh
= 144− 96h+ 12h2 = 12(h− 6)(h− 2).

Thus the critical points are h = 6 and h = 2. We have

V (6) = 0 V (0) = 0 V (2) = 128cm3.

Therefore, the maximum is 128xm3. Actually the question asks for how big we cut
the squares, so answer is h = 2cm; we cut 2cm squares from the corners.

Example 3.12.2. Find the dimensions of the largest (in terms of volume) circular
cylinder (the usual sort of cylinder we are used to playing with) that can be inscribed
(put inside) a sphere of radius 5cm. What fraction of the sphere does the cylinder
occupy?

Solution.
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We draw the following diagrams.

(Assign variables.) Let V be the volume of the cylinder. A cylinder is described
by its height and radius. We denote the hight of the cylinder by h and its radius by
x.

(Relation between variables.) Consider that the volume of sphere is 4
3
πR3 =

4
3
π53 = 500

3
π, and the volume of cylinder is V = πx2h.

We know want to find the relation between variables. Look at the cross section. We
have

52 = x2 + (
h

2
)2.

Therefore,

x =

√
52 − h2

4
.

(Reduce to a function of one variable.) The volume of the cylinder is

V = πx2h = πh

(
52 − h2

4

)
.

(Domain.) Now it’s time to find all possible values for h. Consider that the
volume and height can’t be negative so we must have h ≥ 0 and

V = πh

(
25− h2

4

)
≥ 0.

Thus

0 ≤ 25− h2

4
⇒ h ≤ 10.

Therefore,
0 ≤ h ≤ 10.
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(Max/Min.) We now want to maximize the volume, that is, we should find the
global maximum. Consider that

V = 25πh− πh
3

4
⇒ dV

dh
= 25π − 3π

h2

4
.

To find the critical points, set

25π − 3π
h2

4
= 0 ⇒ h = ± 10√

3
.

Remark that h most be positive so we have

h =
10√

3
.

Note that at h = 10 and h = 0, the volume is zero, so we have the maximal volume
when h = 10√

3
.

The question asks about the dimension of the cylinder (height and radius), so we
need to find the radius too. The radius is

x =

√
52 −

( 10√
3
)2

4
= 5

√
2

3
.

And so the maximum volume is

πx2h = π

(
5

√
2

3

)2
10√

3
=

500π

3
√

3
.

The fraction that the cylinder occupies is

the volume of the cylinder

the volume of the sphere
=

500π
3
√
3

500π
3

=
1√
3
.

Example 3.12.3. Find the dimensions of the largest (in terms of volume) circular
cylinder (the usual sort of cylinder we are used to playing with) that can be inscribed
(put inside) a sphere. What fraction of the sphere does the cylinder occupy?

Solution.
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We draw the following diagrams.

(Assign variables.) Let R be the radius of the sphere. Let V be the volume of the
cylinder. A cylinder is described by its height and radius. We denote the hight of
the cylinder by h and its radius by x.

(Relation between variables.) Consider that the volume of sphere is 4
3
πR3, and

the volume of cylinder is V = πx2h.
We know want to find the relation between variables. Look at the cross section. We
have

R2 = x2 + (
h

2
)2.

Therefore,

x =

√
R2 − h2

4
.

(Reduce to a function of one variable.) The volume of the cylinder is

V = πx2h = πh

(
R2 − h2

4

)
.

(Domain.) Now it’s time to find all possible values for h. Consider that the
volume and height can’t be negative so we must have h ≥ 0 and

V = πh

(
R2 − h2

4

)
≥ 0.

Thus

0 ≤ R2 − h2

4
⇒ h ≤ 2R.

Therefore,
0 ≤ h ≤ 2R.
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(Max/Min.) We now want to maximize the volume, that is, we should find the
global maximum. Consider that

V = R2πh− πh
3

4
⇒ dV

dh
= R2π − 3π

h2

4
.

To find the critical points, set

R2π − 3π
h2

4
= 0 ⇒ h = ±2R√

3
.

Remark that h most be positive so we have

h =
2R√

3
.

Note that at h = 2R and h = 0, the volume is zero, so we have the maximal volume
when h = 2R√

3
.

The question asks about the dimension of the cylinder (height and radius), so we
need to find the radius too. The radius is

x =

√
R2 −

( 2R√
3
)2

4
= R

√
2

3
.

And so the maximum volume is

πx2h = π

(
R

√
2

3

)2
2R√

3
=

4R3π

3
√

3
.

The fraction that the cylinder occupies is

the volume of the cylinder

the volume of the sphere
=

4R3π
3
√
3

4R3π
3

=
1√
3
.
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Example 3.12.4. You need to cross a small canal to get from point A to point B.
The canal is 300m wide and point B is 800m from the closet point on the other
side. You can row at 6km/h and run at 10km/h. To which point on the opposite
side of the canal should you row to in order to minimize your travel time from A
to B?

Solution. Remember that if you travel with the speed of v km/h in t hours, you travel
x = vt km. So your travel time is t = x

v
.

(Diagram and assigning variabels.) In this question, we need to minimize the
total travel time which is made up of the rowing time across the canal and the
running time along the canal. Let us say we row to a point C which is x km along
the bank.
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(Relations and reducing to a function of one variable.)

• The row time T1 from A to C is T1 = 1
6

√
0.32 + x2.

• The running time T2 form C to B is T2 = 1
10

(0.8− x).

• Total time is

T = T1 + T2 =
1

6

√
0.32 + x2 +

1

10
(0.8− x)

(Domain.) Now we want to minimize T . The domain for T is 0 ≤ x ≤ 0.8.

(Max/Min.) Again we use the closed interval method to find the global minimum.
Consider that

dT

dx
=

x

6
√

0.32 + x2
− 1

10

=
5x− 3

√
0.32 + x2

30
√

0.32 + x2
.

When dT
dx

= 0, we have

5x− 3
√

0.32 + x2 = 0 ⇒ 3
√

0.32 + x2 = 5x⇒ 9(0.32 + x2) = 25x2

⇒ 9(0.3)2 + 9x2 = 25x2 ⇒ 9(0.3)2 = 16x2 ⇒ x = ± 9

40
.

But x must be positive, so x = 9
40
. We have

T (0) =
13

100
T (0.8) =

73

60
T (9/40) =

3

25
.

Therefore, the global minimum is at x = 9
40

.
Now we can answer the question, travel time is minimized when we row to a point
9
40
km along the opposite bank.
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3.12.1 How to compute the derivative of f(x)g(x)

Given differentiable functions f(x) and g(x), compute the derivative of

f(x)g(x).

Let
y = f(x)g(x).

So we want to compute y′. We have

ln y = ln f(x)g(x)

ln y = g(x) ln f(x).

Therefore,

y′

y
= g′(x) ln f(x) + g(x)

f ′(x)

f(x)
.

Thus,

y′ =

(
g′(x) ln f(x) + g(x)

f ′(x)

f(x)

)
y

which means

y′ =

(
g′(x) ln f(x) + g(x)

f ′(x)

f(x)

)
f(x)g(x).

Example 3.12.5. Find
d

dx
sin(x)cos(x).

Solution. Let

y = sin(x)cos(x) ⇒ ln y = ln(sin(x)cos(x))⇒ ln y = cos(x) ln(sin(x)).

So we have
y′

y
= − sin(x) ln(sin(x)) + cos(x)

− cos(x)

sin(x)
.

Therefore,

y′ = (− sin(x) ln(sin(x)) + cos(x)
− cos(x)

sin(x)
)y

= (− sin(x) ln(sin(x)) + cos(x)
− cos(x)

sin(x)
) sin(x)cos(x).
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Antiderivatives

Learning Objectives

By the end of this section,

• given a derivative dy
dx

, you will be able to find what is the original function
y = f(x);

• you will be able to find a function F (x) such that F ′(x) = f(x) and F (b) = B.

Bridge to the next calculus

Finally, we come to the last topic that will be covered in this course—Antiderivative.
This topic is actually will be the focus of the next calculus subject. In this course,
a large portion of the concepts either were directly using derivative or it was an
application of the derivative.

Pre-assessment

We have F ′(x) = 4x3 + 1 and F (1) = 10. Then

1. F (x) = x4 + x+ 10

2. F (x) = 4x4 + x+ 5

3. F (x) = x4 + x+ 8

4. None of the above.

Pre-example. Note that

d

dx

(
1

3
x3
)

= x2

d

dx

(
1

3
x3 + 1

)
= x2

d

dx

(
1

3
x3 − π

)
= x2

So what is the antiderivative of x2 (a function that its derivative is x2)?

155
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Definition

Definition. A function F is called an antiderivative of f on an interval I when

F ′(x) = f(x) for all x ∈ I

Why would we want to do this? It turns out that idea is crucial to solving “differential
equations” like the one we saw for population models. Also it helps us solve problems
like “A particle travels with velocity blah. What is its position?”

Theorem

Theorem 4.0.1. If F is an antiderivative of f on an interval I, then the most
general antiderivative is F (x) + C where C is an arbitrary constant.

Examples

Now we find the antiderivative of

• f(x) = sin(x)—F (x) = − cos(x) + C

• f(x) = cos(x) F (x) = sin(x) + C

• f(x) = xn, n 6= −1 F (x) = 1
n+1

xn+1 + C

• f(x) = 1
x

F (x) = ln |x|+ C (be careful with this one)

Since we know the derivative of trig functions and inverse trig functions we also
know that

f(x) = sec2(x) F (x) = tan(x) + C
f(x) = 1√

1−x2 F (x) = arcsin(x) + C

f(x) = 1
1+x2

F (x) = arctan(x) + C
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Example

Example 4.0.2. • Find the antiderivative of

f(x) = 3ex +
2

1 + x2
.

The antiderivative is

F (x) = 3ex + 2 arctan(x) + C

• Find the antiderivative for

g(t) = 2 cos(t) +
t3 − 7

√
t

t
.

Note that

g(t) = 2 cos(t) + t2 +
7
√
t

t
= 2 cos(x) + t2 +

7√
t
.

Therefore, its antiderivative is

G(t) = 2 sin(t) +
t3

3
− 14t1/2 + C.

Example

Example 4.0.3. Find F (x) if F ′(x) = 6x2 − 18x+ 14 and F (0) = 1.

Solution. We have that

F (x) = 2x3 − 9x2 + 14x+ C.

Since F (0) = 1, then

F (0) = 2(0)3 − 9(0)2 + 14(0) + C = 1⇒ C = 1.

Therefore,
F (x) = 2x3 − 9x2 + 14x+ 1.

Post-assessment

We have F ′(x) = 4x3 + 1 and F (1) = 10. Then

1. F (x) = x4 + x+ 10

2. F (x) = 4x4 + x+ 5

3. F (x) = x4 + x+ 8

4. None of the above.

Solution. Consider that F ′(x) = 4x3+1, so F (x) = 1
4
4x4+x+C; we have that F (1) = 10,

so F (1) = 1 + 1 + C = 10. Therefore, C = 8. Consequently, F (x) = x4 + x+ 8.
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Summary

• The antiderivative of a function f(x) is a function F (x) that F ′(x) = f(x);
and

• the most general antiderivative is F (x) +C where C is an arbitrary constant.

Next:

Find F (x) if F ′′(x) = 6x2 − 18x+ 14 and F (0) = −8, F (1) = −5
2
.

Pre-assessment

Find F (x) if F ′′(x) = 6x2 − 18x+ 14 and F (0) = −8, F (1) = −5
2
.

1. F (x) = 1
2
x4 − 3x3 + 7x2 − 8

2. F (x) = 1
2
x4 − 3x3 + 7x2 + x− 8

3. F (x) = 2x4 − 3x3 + 7x2 − 8

4. F (x) = 2x4 − 3x3 + 7x2 + x− 8

Example

Find F (x) if F ′′(x) = sin(x) + 6x and F (0) = π and F (π) = π3.

Solution. Consider that

F ′(x) = − cos(x) + 3x2 + C

and so
F (x) = − sin(x) + x3 + Cx+D.

We have that
F (0) = D = π

F (π) = π3 + Cπ +D = π3 + Cπ + π = π3 ⇒ Cπ + π = 0⇒ C = −1.

Therefore,
F (x) = − sin(x) + x3 − x+ π.
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Post-assessment

Find F (x) if F ′′(x) = 6x2 − 18x+ 14 and F (0) = −8, F (1) = −5
2
.

1. F (x) = 1
2
x4 − 3x3 + 7x2 − 8

2. F (x) = 1
2
x4 − 3x3 + 7x2 + x− 8

3. F (x) = 2x4 − 3x3 + 7x2 − 8

4. F (x) = 2x4 − 3x3 + 7x2 + x− 8

Solution. Consider that
F ′(x) = 2x3 − 9x2 + 14x+ C

and

F (x) =
x4

2
− 3x3 + 7x2 + Cx+D.

We have

F (0) = −8⇒ D = −8, and so F (x) =
x4

2
− 3x3 + 7x2 + Cx− 8.

Moreover,

F (10) = −5

2
⇒ 14

2
− 3 + 7(1)2 + 1C − 8 = −5

2
⇒ C = 1.

Consequently,

F (x) =
x4

2
− 3x3 + 7x2 + x− 8.
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Chapter 5

Review

5.1 How to compute the derivative of f (x)g(x)

d
dx
f(x)g(x)

Given differentiable functions f(x) and g(x), compute the derivative of

f(x)g(x).

Let
y = f(x)g(x).

So we want to compute y′. We have

ln y = ln f(x)g(x)

ln y = g(x) ln f(x).

Therefore,

y′

y
= g′(x) ln f(x) + g(x)

f ′(x)

f(x)
.

Thus,

y′ =

(
g′(x) ln f(x) + g(x)

f ′(x)

f(x)

)
y

which means

y′ =

(
g′(x) ln f(x) + g(x)

f ′(x)

f(x)

)
f(x)g(x).

161
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Example

Find
d

dx
xsin(x).

1. d
dx
xsin(x) = (lnxcos(x) + sin(x)

x
)xsin(x).

2. d
dx
xcos(x) = (lnxsin(x) − cos(x)

x
)xsin(x).

3. d
dx
xsin(x) = (lnxsin(x) + cos(x)

x
)xsin(x).

4. d
dx
xsin(x) = (lnxsin(x) − cos(x)

x
)xsin(x).

Solution

Let y = xsin(x). Then

ln y = lnxsin(x) = sin(x) lnx ⇒
d

dx
ln y =

d

dx
sin(x) lnx ⇒

y′

y
= (cos(x) lnx+

sin(x)

x
)y ⇒

y′ = (lnxcos(x) +
sin(x)

x
)xsin(x).

Example

Example 5.1.1. Find
d

dx
sin(x)cos(x).

Solution. Let

y = sin(x)cos(x) ⇒ ln y = ln(sin(x)cos(x))⇒ ln y = cos(x) ln(sin(x)).

So we have
y′

y
= − sin(x) ln(sin(x)) + cos(x)

− cos(x)

sin(x)
.

Therefore,

y′ = (− sin(x) ln(sin(x)) + cos(x)
− cos(x)

sin(x)
)y

= (− sin(x) ln(sin(x)) + cos(x)
− cos(x)

sin(x)
) sin(x)cos(x).
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5.2 Newton’s law of cooling

Newton’s Law of Cooling

dT

dt
(t) = K [T (t)− A] .

where T (t) is the temperature of the object at time t, A is the temperature of its
surroundings, and K is a constant of proportionality.

Newton’s Law of Cooling

Corollary 5.2.1. A differentiable function T (t) obeys the differential equation

dT

dt
(t) = K[T (t)− A]

if and only if
T (t) = [T (0)− A]eKt + A.

Newton’s Law of Cooling

The temperature of a glass of iced tea is initially 5◦. After 5 minutes, the tea has
heated to 10◦ in a room where the air temperature is 30◦.
What is the temperature after 10 minutes?

1. 11

2. 12

3. 13

4. 14

Example 5.2.2. The temperature of a glass of iced tea is initially 5◦. After 5
minutes, the tea has heated to 10◦ in a room where the air temperature is 30◦.

(a) Determine the temperature as a function of time.

(b) What is the temperature after 10 minutes?

(c) Determine when tea will reach a temperature of 20◦.
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Solution

(a) We let T (t) be the temperature of the tea t minutes after it was removed from
the fridge, then the function of the temperature of the tea is

T (t) = [T (0)− A]eKt + A

and since A = 30 and T (0) = 5, the equation is

T (t) = [5− 30]eKt + 30 = −25eKt + 30.

However, still K is unknown and we should find it. Consider that after 5 minutes
the temperature of the tea is 10◦, thus T (5) = 10. That is,

10 = T (5) = −25e5K + 30⇒ −20 = −25e5K ⇒ 4/5 = e5K

⇒ 5K = ln 4/5⇒ K =
ln 4/5

5
.

Therefore the temperature at time t is

T (t) = −25e
ln 4/5

5
t + 30.

(b) The temperature after 10 minutes is

T (10) = −25e
ln 4/5

5
10 + 30 =

−25e2 ln 4/5 + 30 = −25eln(4/5)
2

+ 30 = −25× (4/5)2 + 30 = 14

(c) The time that T (t) = 20, should satisfies

T (t) = −25e
ln 4/5

5
t + 30 = 20.

Thus

−10 = −25e
ln 4/5

5
t ⇒ 2/5 = e

ln 4/5
5

t ⇒ 2/5 = (4/5)(1/5)t ⇒ t = 20.5

to 1 decimal place.

5.3 Related rates

Related Rates

A ball is dropped from a height of 49m above level ground. The height of the ball
at time t is h(t) = 49 − 4.9t2m. A light, which is also 49m above the ground, is
10m to the left of the ball’s original position. As the ball descends, the shadow
of the ball caused by the light moves across the ground. How fast is the shadow
moving one second after the ball is dropped?

1. -100 2. -200 3. 100 4. 200
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Solution. Let s(t) be the distance from the shadow to the point on the ground
directly underneath the ball. By similar triangles we have

4.9t2

10
=

49− 4.9t2

s(t)
.

Therefore,

s(t) =
10(49− 4.9t2)

4.9t2

and so

s(t) =
100

t2
− 10.

We have

s′(t) = −2
100

t3
.

Consequently, s′(1) = −200m/sec.
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5.4 Taylor Polynomial

Taylor Polynomial

Let a be a constant and let n be a non-negative integer. The nth degree Taylor
polynomial for f(x) about x = a is

Tn(x) = f(a)+f ′(a)(x−a)+
1

2!
f ′′(a)(x−a)2+

1

3!
f (3)(a)(x−a)3+· · ·+ 1

n!
f (n)(a)(x−a)n

Tn(x) =
n∑
k=0

1

k!
f (k)(a)(x− a)k

The special case a = 0 is called a Maclaurin polynomial.

Maclaurin polynomial for sin(x)

Example. Find the 5th degree Maclaurin polynomial for sin(x).

1. T5(x) = x− x3

3!
+ x5

5!

2. T5(x) = x+ x3

3!
− x5

5!

3. T5(x) = x+ x3

3
− x5

5

4. T5(x) = 1 + x2

2!
− x4

4!

Solution. Let g(x) = sin(x). We have

g(0) = 0, g′(0) = 1, g′′(0) = 0, g′′′(0) = −1, g(4)(0) = 0, g(5) = 1.

Hence

T5(x) = x− x3

3!
+
x5

5!

The (2n+ 1)th Maclaurin polynomial for sin(x) is

T2n+1(x) =
n∑
k=0

(−1)k

(2k + 1)!
x2k+1

Third Taylor polynomial of ln(x)

Which of the following is the third Taylor polynomial of lnx about x = 1.

1. 1 + (x− 1)− 1
2
(x− 1)2 + 2

3!
(x− 1)3

2. 1 + (x− 1)− 1
2
(x− 1)2 − 2

3!
(x− 1)3

3. (x− 1)− 1
2
(x− 1)2 + 2

3!
(x− 1)3

4. (x− 1)− 1
2
(x− 1)2 − 2

3!
(x− 1)3
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Solution. We have
f(x) = ln(x) f(1) = 0

f ′(x) =
1

x
f ′(1) = 1

f ′′(x) =
−1

x2
f ′′(1) = −1

f (3)(x) =
2

x3
f ′′′(1) = 2

f (4)(x) =
−6

x4

T3(x) = 0 + (x− 1)− 1

2
(x− 1)2 +

2

3!
(x− 1)3.

5.5 Lagrange remainder theorem

Lagrange remainder theorem: The error when approximating function
is Tn(x)

Rn(x) = f(x)−Tn(x) =
1

(n+ 1)!
f (n+1)(c)(x−a)n+1 for some c strictly between a and x

Estimate ln(2)

We use the third Taylor polynomial for ln(x) about x = 1 to estimate ln(2). Then
which of the following is more accurate.

1. |R3(2)| ≤ 1.

2. |R3(2)| ≤ 1
2
.

3. |R3(2)| ≤ 1
4
.

4. |R3(2)| = 0.

Solution. Consider that f (4)(x) = −6
x4

and T3(x) = 0 + (x− 1)− 1
2
(x− 1)2 + 2

3!
(x− 1)3.

So T (2) = 1− 1
2

+ 2
3!

= 5
6
. By Lagrange remainder theorem we have

R3(2) =
1

4!
f (4)(c)(x− 1)4 =

1

4!
f (4)(c) =

1

4!

−6

c4

for some 1 < c < 2. When 1 < c < 2, we have that |−6
c4
| ≤ 6. Therefore,

|R3(2)| = | 1
4!

−6

c4
| ≤ 1

4!
6 =

1

4
.

So,

|R3(2)| ≤ 1

4
= 0.25 < 0.5× 10−0

so it is accurate to 0 decimal points.
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5.6 Graph sketching

Domain

The domain of f(x) = x(3− x)1/3 is

1. x ≤ 3 2. x ≥ 3 3. 0 ≤ x ≤ 3 4. R.

Solution. The domain of the function f(x) is R.

limits

Let f(x) = x(3− x)1/3. Then limx→∞ f(x) = ..... and limx→∞ f(x) = ......

1. −∞,−∞ 2. ∞,−∞ 3. −∞,∞ 4. ∞,∞

Solution. The answer is the first choice.

Derivative of f(x)

Let f(x) = x(3− x)1/3. Then

1. d
dx
f(x) = − 4x−9

3(3−x)2/3 .

2. d
dx
f(x) = 4x−9

3(3−x)2/3 .

3. d
dx
f(x) = (x− 3)1/3 − 1

3(3−x)2/3 .

4. d
dx
f(x) = (x− 3)1/3 + 1

3(3−x)2/3 .

Solution. We have that

d

dx
f(x) = (3− x)1/3 − x

3(3− x)2/3
=

3(3− x)− x
3(3− x)2/3

= − 4x− 9

3(3− x)2/3

Singular/Critical

Let f(x) = x(3− x)1/3. Then

1. f(x) has a singular point at x = 2.25 and a critical point at x = 3.

2. f(x) has singular points at x = 2.25 and x = 3.

3. f(x) has a singular point at x = 3 and a critical point at x = 2.25.

4. f(x) has critical points at x = 2.25 and x = 3.
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Solution. Note that

f ′(x) = − 4x− 9

3(3− x)2/3
.

So f ′(x) = 0 when x = 9/4 = 2.25; so x = 2.25 is the only critical point, and also the
regular point is x = 3 because the derivative is not defined at that point.

Global max/min

Let f(x) = x(3 − x)1/3. Find the global max/min (if any) of f(x) on the interval
[0, 4]

1. f(x) has a global max at x = 2.25 and has a global min at x = 4.

2. f(x) has a global max at x = 4 and has a global min at x = 2.25.

3. f(x) has a global max at x = 2.25 and has no global min.

4. f(x) has no global max and has a global min at x = 4.

Solution. Note that f(x) is continuous and we want to find the global max/min, so the
most useful theorem here is the closed interval method. Since

f(0) = 0, f(4) = −4, f(2.25) = 2.25(0.75)1/3, f(3) = 0,

by the closed interval method we have that the global max is at x = 2.25 and the global
minimum is at x = 4.

Increasing/Decreasing

Let f(x) = x(3− x)1/3. Find where the function f(x) is increasing and where it is
decreasing.

1. f(x) is increasing on (−∞, 2.25) ∪ (3,∞), and it is decreasing on (2.25, 3).

2. f(x) is decreasing on (−∞, 2.25) ∪ (3,∞), and it is increasing on (2.25, 3).

3. f(x) is decreasing on (−∞, 2.25), and it is increasing on (2.25,∞).

4. f(x) is increasing on (−∞, 2.25), and it is decreasing on (2.25,∞).

Solution. We have that

(−∞, 2.25) x = 2.25 (2.25, 3) x = 3 (3,∞)
f ′(x) + 0 − DNE −

So the right answer is 4.
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Local max/min

Let f(x) = x(3− x)1/3. Find the local max/min (if any) of f(x).

1. f(x) has a local min at x = 2.25 and has a local max at x = 3.

2. f(x) has a local max at x = 2.25 and has a local min at x = 3.

3. f(x) has a local max at x = 2.25 and has no local min.

4. f(x) has a local min at x = 3 and has no local max.

Solution. Looking at the previous question we have that there is a local max at x = 2.25
since the function is first increasing and then decreasing around x = 2.25. It does not
have a local min.

Second derivative

Let f(x) = x(3− x)1/3. Find the second derivative of f(x).

1. f ′′(x) = −4x−18
9(3−x)5/3

2. f ′′(x) = 4x+18
9(3−x)5/3

3. f ′′(x) = −4x+18
9(3−x)5/3

4. f ′′(x) = 4x−18
9(3−x)5/3

Solution. The right answer is 4.

Concavity

Let f(x) = x(3− x)1/3. Where f(x) is concave up and where it is concave down.

1. Concave down on (−∞, 4.5) and concave up (4.5,∞).

2. Concave down on (−∞, 3) and concave up (3,∞).

3. Concave down on (−∞, 3) ∪ (4.5,∞) and concave up (3, 4.5).

4. Concave up on (−∞, 3) ∪ (4.5,∞) and concave down on (3, 4.5).

Solution. Note that

f ′′(x) =
4x− 18

9(3− x)5/3
.

Thus f ′′(x) = 0 at x = 4.5 and it doesn’t exist at x = 3. We have that

(−∞, 3) x = 3 (3, 4.5) x = 4.5 (4.5,∞)
f ′′(x) − DNE + 0 −

concavity D U D
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Inflection points

Let f(x) = x(3− x)1/3. Find the inflection point(s) of f(x).

1. The function has only one inflection point at x = 3.

2. The function has only one inflection point at x = 4.5.

3. The function has inflection points at x = 3 and x = 4.5

4. The function has no inflection points.

Solution. Therefore, by the solution of the previous question, the inflection points are at
x = 3 and x = 4.5.
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Homework 1:

Go to this link
https://www.mooculus.osu.edu/textbook/mooculus.pdf and download the book ”MOOCU-
LUS”. Then do the following questions:

• all questions in page 35;

• in page 33 see why limx→0
sin(x)
x

= 1. Then do Questions 1-8 page 38;

• in page 42, do questions 1-10.

Homework 2:

• Do Worksheets! by Lior Silberman

https://www.mooculus.osu.edu/textbook/mooculus.pdf
https://www.math.ubc.ca/~lior/teaching/1920/100_F19/
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